skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2305493

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Nectar is a central bridge between angiosperms and animal mutualists. It is produced by specialized structures termed nectaries, which can be found on different plant organs. Consumption of floral nectar by pollinators and the subsequent transfer of pollen contribute to the reproductive success of both angiosperms and their pollinators. Floral nectaries have evolved many times independently, feature diverse structural organizations, and produce nectars with various compositions, which cater to a wide range of pollinators. While the nectary and its nectar have been documented for two millennia, many aspects of nectary biology are still unknown. Recent advances in genetics, genomics, and comparative analyses across diverse species have accelerated our understanding of floral nectary structures and the genetic circuits behind their formation and evolution. In this review, we summarize the recent breakthroughs in nectary research and provide a macroevolutionary framework of floral nectary evolution, focusing on the genetic mechanisms that drive nectary development and shape nectary diversity. 
    more » « less
  2. Abstract The Ranunculales are a hyperdiverse lineage in many aspects of their phenotype, including growth habit, floral and leaf morphology, reproductive mode, and specialized metabolism. Many Ranunculales species, such as opium poppy and goldenseal, have a high medicinal value. In addition, the order includes a large number of commercially important ornamental plants, such as columbines and larkspurs. The phylogenetic position of the order with respect to monocots and core eudicots and the diversity within this lineage make the Ranunculales an excellent group for studying evolutionary processes by comparative studies. Lately, the phylogeny of Ranunculales was revised, and genetic and genomic resources were developed for many species, allowing comparative analyses at the molecular scale. Here, we review the literature on the resources for genetic manipulation and genome sequencing, the recent phylogeny reconstruction of this order, and its fossil record. Further, we explain their habitat range and delve into the diversity in their floral morphology, focusing on perianth organ identity, floral symmetry, occurrences of spurs and nectaries, sexual and pollination systems, and fruit and dehiscence types. The Ranunculales order offers a wealth of opportunities for scientific exploration across various disciplines and scales, to gain novel insights into plant biology for researchers and plant enthusiasts alike. 
    more » « less
  3. This Editorial introduces the Virtual Issue ‘Nectar and nectaries’ that includes the following papers: Ballarinet al.(2024), Griersonet al.(2024), Grof‐Tiszaet al.(2025), Landucci & Vannette (2025), Liaoet al.(2025), MacNeillet al.(2025), Magneret al.(2023, 2024, 2025), Minet al.(2019), Mouet al.(2025), Parkinsonet al.(2025), Quevedo‐Caraballoet al.(2025), Ramoset al.(2025), Romero‐Bravo & Castellanos (2024), Soareset al.(2025), Turneret al.(2025), Zhaiet al.(2025), Zhanget al.(2020). Access the Virtual Issue atwww.newphytologist.com/virtualissues. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026