- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Niu, Jia (2)
-
Chatterjee, Abhishek (1)
-
Chen, Albert D. (1)
-
Farha, Omar K. (1)
-
Giardino, Gavin J (1)
-
Ke, Chenfeng (1)
-
Li, Errui (1)
-
Li, Fangzhou (1)
-
Pham, Quan (1)
-
Samanta, Krishanu (1)
-
Schmidt‐Rohr, Klaus (1)
-
Staples, Richard J. (1)
-
Wu, Lianqian (1)
-
Zheng, Zhaoxi (1)
-
Zhou, Zefeng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Boron trifluoride (BF3) is a highly corrosive gas widely used in industry. Confining BF3in porous materials ensures safe and convenient handling and prevents its degradation. Hence, it is highly desired to develop porous materials with high adsorption capacity, high stability, and resistance to BF3corrosion. Herein, we designed and synthesized a Lewis basic single‐crystalline hydrogen‐bond crosslinked organic framework (HCOF‐50) for BF3storage and its application in catalysis. Specifically, we introduced self‐complementaryortho‐alkoxy‐benzamide hydrogen‐bonding moieties to direct the formation of highly organized hydrogen‐bonded networks, which were subsequently photo‐crosslinked to generate HCOFs. The HCOF‐50 features Lewis basic thioether linkages and electron‐rich pore surfaces for BF3uptake. As a result, HCOF‐50 shows a record‐high 14.2 mmol/g BF3uptake capacity. The BF3uptake in HCOF‐50 is reversible, leading to the slow release of BF3. We leveraged this property to reduce the undesirable chain transfer and termination in the cationic polymerization of vinyl ethers. Polymers with higher molecular weights and lower polydispersity were generated compared to those synthesized using BF3 ⋅ Et2O. The elucidation of the structure–property relationship, as provided by the single‐crystal X‐ray structures, combined with the high BF3uptake capacity and controlled sorption, highlights the molecular understanding of framework‐guest interactions in addressing contemporary challenges.more » « less
-
Zhou, Zefeng; Pham, Quan; Giardino, Gavin J; Chatterjee, Abhishek; Niu, Jia (, Journal of the American Chemical Society)Controlling the structure and reactivity of the chain-end group is a central objective in modern polymer chemistry. Here, we introduce 3,6-anhydrogalactal as a single-addition monomer that enables efficient and versatile chain-end functionalization of metathesis polymers. Readily synthesized from biomass-derived galactal, 3,6-anhydrogalactal exhibits excellent single-addition reactivity, allowing precise chain-end modifications even when introduced simultaneously with the propagating monomer. Theoretical calculations provide mechanistic insights into the unique reactivities governing its single-addition behavior. Its broad functional group compatibility facilitates diverse applications, including block copolymer synthesis, polymer-polymer coupling, and bioconjugation, demonstrating significant potential for advancing polymer materials and bioconjugation strategies.more » « lessFree, publicly-accessible full text available May 21, 2026
An official website of the United States government
