- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Allison, Steven D (1)
-
Gaut, Brandon S (1)
-
Scales, Nicholas C (1)
-
Sorouri, Bahareh (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
Steven, Blaire (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Steven, Blaire (Ed.)ABSTRACT Microbes are essential for the functioning of all ecosystems, and as global warming and anthropogenic pollution threaten ecosystems, it is critical to understand how microbes respond to these changes. We investigated the climate response ofSphingomonas, a widespread gram-negative bacterial genus, during an 18-month microbial community reciprocal transplant experiment across a Southern California climate gradient. We hypothesized that after 18 months, the transplantedSphingomonasclade and functional composition would correspond with site conditions and reflect theSphingomonascomposition of native communities. We extractedSphingomonassequences from metagenomic data across the gradient and assessed their clade and functional composition. Representatives of at least 12 majorSphingomonasclades were found at varying relative abundances along the climate gradient, and transplantedSphingomonasclade composition shifted after 18 months. Site had a significant effect (PERMANOVA;P< 0.001) on the distribution of bothSphingomonasfunctional (R2= 0.465) and clade composition (R2= 0.400), suggesting thatSphingomonascomposition depends on climate parameters. Additionally, for bothSphingomonasclade and functional composition, ordinations revealed that the transplanted communities shifted closer to the nativeSphingomonascomposition of the grassland site compared with the site they were transplanted into. Overall, our results indicate that climate and substrate collectively determineSphingomonasclade and functional composition.IMPORTANCESphingomonasis the most abundant gram-negative bacterial genus in litter-degrading microbial communities of desert, grassland, shrubland, and forest ecosystems in Southern California. We aimed to determine whetherSphingomonasresponds to climate change in the same way as gram-positive bacteria and whole bacterial communities in these ecosystems. WithinSphingomonas, both clade composition and functional genes shifted in response to climate and litter chemistry, supporting the idea that bacteria respond similarly to climate at different scales of genetic variation. This understanding of how microbes respond to perturbation across scales may aid in future predictions of microbial responses to climate change.more » « less
An official website of the United States government
