skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2306221

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study the inverse problem of recovering the doping profile in the stationary Vlasov–Poisson equation, given the knowledge of the incoming and outgoing measurements at the boundary of the domain. This problem arises from identifying impurities in the semiconductor manufacturing. Our result states that, under suitable assumptions, the doping profile can be uniquely determined through an asymptotic formula of the electric field that it generates. 
    more » « less
  2. We consider an inverse problem for the nonlinear Boltzmann equation with a time-dependent kernel in dimensions n \geq 2. We establish a logarithm-type stability result for the collision kernel from measurements under certain additional conditions. A uniqueness result is derived as an immediate consequence of the stability result. Our approach relies on second-order linearization and multivariate finite differences, as well as the stability of the light-ray transform. 
    more » « less