- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
05
- Author / Contributor
- Filter by Author / Creator
-
-
Tran, Minh-Binh (5)
-
Das, Arijit (1)
-
De_Nitti, Nicola (1)
-
Hannani, Amirali (1)
-
Phung, Minh-Nhat (1)
-
Rumpf, Benno (1)
-
Soffer, Avy (1)
-
Trélat, Emmanuel (1)
-
Walton, Steven (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2026
-
Das, Arijit; Tran, Minh-Binh (, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences)This article introduces a novel numerical approach, based on finite-volume techniques, for studying fully nonlinear coagulation–fragmentation models, where both the coagulation and fragmentation components of the collision operator are nonlinear. The models come from three-wave kinetic equations, a pivotal framework in wave turbulence theory. Despite the importance of wave turbulence theory in physics and mechanics, there have been very few numerical schemes for three-wave kinetic equations, in which no additional assumptions are manually imposed on the evolution of the solutions, and the current manuscript provides one of the first of such schemes. To the best of our knowledge, this also is the first numerical scheme capable of accurately capturing the long-term asymptotic behaviour of solutions to a fully nonlinear coagulation–fragmentation model. The scheme is implemented on some test problems, demonstrating strong alignment with theoretical predictions of energy cascade rates, rigorously obtained in the work (Soffer & Tran. 2020Commun. Math. Phys.376, 2229–2276. (doi:10.1007/BF01419532)). We further introduce a weighted finite-volume variant to ensure energy conservation across varying degrees of kernel homogeneity. Convergence and first-order consistency are established through theoretical analysis and verified by experimental convergence orders in test cases.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Rumpf, Benno; Soffer, Avy; Tran, Minh-Binh (, Mathematische Zeitschrift)Free, publicly-accessible full text available June 1, 2026
-
Hannani, Amirali; Phung, Minh-Nhat; Tran, Minh-Binh; Trélat, Emmanuel (, Journal of Differential Equations)Free, publicly-accessible full text available May 1, 2026
-
De_Nitti, Nicola; Tran, Minh-Binh (, Mathematical Control and Related Fields)Free, publicly-accessible full text available January 1, 2026
An official website of the United States government
