Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Art and materials innovation have always been intertwined, dating back to the earliest human creations. In modern times, however, the increasing specialization of materials science often restricts artists' access to cutting‐edge materials. Here, the materials science aspects of an art‐science collaboration between artist Kimsooja and the Wiesner Lab at Cornell University, are detailed. The project involves the development of a custom‐made iridescent block copolymer coating by means of self‐assembly, originally applied to transparent window panels of a façade for the ≈14 m tall art installation:A Needle Woman: Galaxy Is a Memory, Earth is a Souvenirby artist Kimsooja. After several exhibitions in the US and Europe, the installation is now part of the permanent museum collection at Yorkshire Sculpture Park in Wakefield, UK. Full characterization of the solution blade‐cast coatings show shear aligned, standing up lamellar morphologies that behave as volume‐phase gratings with periodicities between 300 and 400 nm. Coatings are also applied to foldable (origami) paper and converted into iridescent porous ceramic materials. It is hoped this work inspires and informs communities across materials science, the arts, and architecture.more » « less
-
The multiscale architecture of electrochemical energy storage (EES) materials critically impacts device performance, including energy, power, and durability. The pore space of nano‐ to macrostructured electrodes determines mass transport within the electrolyte and defines the effective energy density. The dimensions of the active charge‐storing materials can increase stability during cycling by accommodating strains from electrochemical–mechanical coupling while also defining surface area that increases capacitive charge storage, decreases charge‐transfer resistance, but also leads to low efficiency and degradation from interfacial reactions. Thus, elucidating and developing a fundamental understanding of these correlations requires materials with precisely tunable nanoscale architectures. Herein, approaches that take advantage of the nanoscale control offered by block copolymer (BCP) self‐assembly are reviewed and insights gained from associated nanoscale phenomena observed in EES are highlighted. Systematic studies that use custom‐tailored BCPs to reveal fundamental nanostructure–property–performance relationships are emphasized. Importantly, most reports of nanostructured materials utilize low loadings and thin electrodes and results represent mass transfer limitations at the particle scale. However, as cell‐level performance involves mass transport over 10–100s of micrometers, recently emerging BCP‐based processes are further highlighted, leading to hierarchical meso/macroporous materials needed for creating multiscale structure–performance relationships and next‐generation energy storage material architectures.more » « less
An official website of the United States government
