skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2307180

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We introduce a new approach for analysing the intergalactic medium (IGM) damping wings imprinted on the proximity zones of quasars in the epoch of reionization (EoR). Whereas past work has typically forgone the additional constraining power afforded by the blue side continuum ($$\lambda \lesssim 1280\,$$ Å) and/or opted not to model the large correlated IGM transmission fluctuations in the proximity zone ($$\lambda \lesssim 1216\,$$ Å), we construct a generative probabilistic model for the entire spectrum accounting for all sources of error – the stochasticity induced by patchy reionization, the impact of the quasar’s ionizing radiation on the IGM, the unknown intrinsic spectrum of the quasar, and spectral noise. This principled Bayesian method allows us to marginalize out nuisance parameters associated with the quasar’s radiation and its unknown intrinsic spectrum to precisely measure the IGM neutral fraction, $$\langle x_{\rm H\,\small{I}}\rangle$$. A key element of our analysis is the use of dimensionality reduction (DR) to describe the intrinsic quasar spectrum via a small number of nuisance parameters. Using a large sample of 15 559 SDSS/BOSS quasars at $$z \gtrsim 2.15$$ we trained and quantified the performance of six distinct DR methods, and find that a six parameter principal component analysis model (five coefficients plus a normalization) performs best, with complex machine-learning approaches providing no advantage. By conducting statistical inference on 100 realistic mock EoR quasar spectra, we demonstrate the reliability of the credibility contours that we obtain on $$\langle x_{\rm H\,{\small{I}}}\rangle$$ and the quasar lifetime, $$t_{\rm Q}$$. The new method introduced here will transform IGM damping wings into a precision probe of reionization, on the same solid methodological and statistical footing as other precision cosmological measurements. 
    more » « less