skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2307202

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Astrophysical relativistic outflows are launched as Poynting-flux dominated, yet the mechanism governing efficient magnetic dissipation, which powers the observed emission, is still poorly understood. We study magnetic energy dissipation in relativistic “striped” jets, which host current sheets separating magnetically dominated regions with opposite field polarity. The effective gravity forcegin the rest frame of accelerating jets drives the Kruskal–Schwarzschild instability (KSI), a magnetic analog of the Rayleigh–Taylor instability. By means of 2D and 3D particle-in-cell simulations, we study the linear and nonlinear evolution of the KSI. The linear stage is well described by linear stability analysis. The nonlinear stages of the KSI generate thin (skin-depth-thick) current layers, with length comparable to the dominant KSI wavelength. There, the relativistic drift-kink mode and the tearing mode drive efficient magnetic dissipation. The dissipation rate can be cast as an increase in the effective width Δeffof the dissipative region, which follows d Δ eff / d t 0.05 Δ eff g . Our results have important implications for the location of the dissipation region in gamma-ray burst and active galactic nuclei jets. 
    more » « less
    Free, publicly-accessible full text available April 22, 2026
  2. ABSTRACT Spider pulsars are binary systems composed of a millisecond pulsar and a low-mass companion. Their X-ray emission, varying with orbital phase, originates from synchrotron radiation produced by high-energy electrons accelerated at the intrabinary shock. For fast-spinning pulsars in compact binary systems, the intrabinary shock emission occurs in the fast cooling regime. Using global 2D particle-in-cell simulations, we investigate the effect of synchrotron losses on the shock structure and the resulting emission, assuming that the pulsar wind is stronger than the companion wind (so, the shock wraps around the companion), as expected in black widows. We find that the shock opening angle gets narrower for greater losses; the light curve shows a more prominent double-peaked signature (with two peaks just before and after the pulsar eclipse) for stronger cooling; below the cooling frequency, the synchrotron spectrum displays a hard power-law range, consistent with X-ray observations. 
    more » « less
  3. ABSTRACT Spider pulsars are compact binary systems composed of a millisecond pulsar and a low-mass companion. Their X-ray emission – modulated on the orbital period – is interpreted as synchrotron radiation from high-energy electrons accelerated at the intrabinary shock. We perform global two-dimensional particle-in-cell simulations of the intrabinary shock, assuming that the shock wraps around the companion star. When the pulsar spin axis is nearly aligned with the orbital angular momentum, we find that the magnetic energy of the relativistic pulsar wind – composed of magnetic stripes of alternating field polarity – efficiently converts to particle energy at the intrabinary shock, via shock-driven reconnection. The highest energy particles accelerated by reconnection can stream ahead of the shock and be further accelerated by the upstream motional electric field. In the downstream, further energization is governed by stochastic interactions with the plasmoids/magnetic islands generated by reconnection. We also extend our earlier work by performing simulations that have a larger (and more realistic) companion size and a more strongly magnetized pulsar wind. We confirm that our first-principles synchrotron spectra and light curves are in good agreement with X-ray observations. 
    more » « less