Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Future flood risk assessment has primarily focused on heavy rainfall as the main driver, with the assumption that projected increases in extreme rain events will lead to subsequent flooding. However, the presence of and changes in vegetation have long been known to influence the relationship between rainfall and runoff. Here, we extract historical (1850–1880) and projected (2070–2100) daily extreme rainfall events, the corresponding runoff, and antecedent conditions simulated in a prominent large Earth system model ensemble to examine the shifting extreme rainfall and runoff relationship. Even with widespread projected increases in the magnitude (78% of the land surface) and number (72%) of extreme rainfall events, we find projected declines in event‐based runoff ratio (runoff/rainfall) for a majority (57%) of the Earth surface. Runoff ratio declines are linked with decreases in antecedent soil water driven by greater transpiration and canopy evaporation (both linked to vegetation greening) compared to areas with runoff ratio increases. Using a machine learning regression tree approach, we find that changes in canopy evaporation is the most important variable related to changes in antecedent soil water content in areas of decreased runoff ratios (with minimal changes in antecedent rainfall) while antecedent ground evaporation is the most important variable in areas of increased runoff ratios. Our results suggest that simulated interactions between vegetation greening, increasing evaporative demand, and antecedent soil drying are projected to diminish runoff associated with extreme rainfall events, with important implications for society.more » « less
-
Abstract Drylands provide multiple essential services to human society, and dryland vegetation is one of the foundations of these services. There is a paradox, however, in the vegetation productivity–precipitation relationship in drylands. Although water is the most limiting resource in these systems, a strong relationship between precipitation and productivity does not always occur. Such a paradox affects our understanding of dryland vegetation dynamics and hinders our capacity to predict dryland vegetation responses under future climates. In this perspective, we examine the possible causes of the dryland precipitation–productivity paradox. We argue that the underlying reasons depend on the location and scale of the study. Sometimes multiple factors may interact, resulting in a less significant relationship between vegetation growth and water availability. This means that when we observe a poor correlation between vegetation growth and water availability, there are potentially missing sources of water input or a lack of consideration of other important processes. The paradox could also be related to the inaccurate measurement of vegetation productivity and water availability indicators. Incorporating these complexities into predictive models will help us better understand the complex relationship between water availability and dryland ecosystem processes and improve our ability to predict how these ecosystems will respond to the multiple facets of climate change.more » « less
-
Free, publicly-accessible full text available December 11, 2025
An official website of the United States government
