Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We address the formation of giant clumps in violently unstable gas-rich disc galaxies at cosmic noon. While these are commonly thought to originate from gravitational Toomre instability, some cosmological simulations have indicated that clumps can form in Lagrangian proto-clump regions where the Toomre Q parameter is well above unity, which are linearly stable. Examining one of these cosmological simulations, we find that it exhibits an excess in compressive modes of turbulence with converging motions. The energy in converging motions within proto-clumps is $${\sim} 70~{{\ \rm per\ cent}}$$ of the total turbulent energy, compared to $${\sim} 17~{{\ \rm per\ cent}}$$ expected in equipartition. When averaged over the whole disc, $${\sim} 40~{{\ \rm per\ cent}}$$ of the turbulent energy is in compressive modes, mostly in converging motions, with the rest in solenoidal modes, compared to the $(1/3)-(2/3)$ division expected in equipartition. By contrast, we find that in an isolated-disc simulation with similar properties, resembling high-z star-forming galaxies, the different turbulence modes are in equipartition, both in proto-clumps and over the whole disc. We conclude that the origin of excessive converging motions in proto-clumps is external to the disc, and propose several mechanisms that can induce them. This is an additional mechanism for clump formation, complementary to and possibly preceding gravitational instability.more » « less
-
ABSTRACT Theory and observations reveal that the circumgalactic medium (CGM) and the cosmic web at high redshifts are multiphase, with small clouds of cold gas embedded in a hot, diffuse medium. We study the ‘shattering’ of large, thermally unstable clouds into tiny cloudlets of size $$\ell _{\rm shatter}\sim {\rm min}(c_{\rm s}t_{\rm cool})$$ using idealized numerical simulations. We expand upon previous works by exploring the effects of cloud geometry (spheres, streams, and sheets), metallicity, and an ionizing ultraviolet background. We find that ‘shattering’ is mainly triggered by clouds losing sonic contact and rapidly imploding, leading to a reflected shock that causes the cloud to re-expand and induces Richtmyer–Meshkov instabilities at its interface. The fragmented cloudlets experience a drag force from the surrounding hot gas, leading to recoagulation into larger clouds. We distinguish between ‘fast’ and ‘slow’ coagulation regimes. Sheets are always in the ‘fast’ coagulation regime, while streams and spheres transition to ‘slow’ coagulation above a critical overdensity, which is smallest for spheres. Surprisingly, $$\ell _\mathrm{shatter}$$ does not appear to be a characteristic clump size even if it is well resolved. Rather, fragmentation continues until the grid scale with a mass distribution of $$N(\gt m)\propto m^{-1}$$. We apply our results to cold streams feeding massive ($$M_{\rm v}\lower.5ex\rm{\,\, \buildrel\gt \over \sim \,\,}10^{12}\, {\rm M}_\odot$$) galaxies at $$z\lower.5ex\rm{\,\, \buildrel\gt \over \sim \,\,}2$$ from the cosmic web, finding that streams likely shatter upon entering the hot CGM through the virial shock. This could explain the large clumping factors and covering fractions of cold gas around such galaxies, and may be related to galaxy quenching by preventing cold streams from reaching the central galaxy.more » « less
-
ABSTRACT We explore the evolution of cold streams from the cosmic web that feed galaxies through their shock-heated circumgalactic medium (CGM) at cosmic noon, $$z\simeq 1-5$$. In addition to the hydrodynamical instabilities and radiative cooling that we have incorporated in earlier works, we embed the stream and the hot CGM in the gravitational potential of the host dark matter halo, deriving equilibrium profiles for both. Self-gravity within the stream is tentatively ignored. We find that the cold streams gradually entrain a large mass of initially hot CGM gas that cools in the mixing layer and condenses onto the stream. This entrainment, combined with the acceleration down the gravitational potential well, typically triples the inward cold inflow rate into the central galaxy, compared to the original rate at the virial radius, which makes the entrained gas the dominant source of gas supply to the galaxy. The potential sources for the hot gas to be entrained are recycled enriched gas that has been previously ejected from the galaxy, and fresh virial-shock-heated gas that has accumulated in the CGM. This can naturally elevate the star formation rate in the galaxy by a factor of $$\sim 3$$ compared to the gas accretion rate onto the halo, thus explaining the otherwise puzzling observed excess of star formation at cosmic noon. When accounting for self-shielding of dense gas from the ultraviolet background, we find that the energy radiated from the streams, originating predominantly from the cooling of the entrained gas, is consistent with observed Lyman-$$\alpha$$ blobs around galaxies.more » « less
-
Free, publicly-accessible full text available June 1, 2026
An official website of the United States government
