skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2307447

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present COSBO-7, a strong millimeter source known for more than 16 yr that just revealed its near-to-mid-IR counterpart with the James Webb Space Telescope (JWST). The precise pinpointing by the Atacama Large Millimeter/submillimeter Array on the exquisite NIRCam and MIRI images show that it is a background source gravitationally lensed by a single foreground galaxy, and the analysis of its spectral energy distribution by different tools is in favor of photometric redshift atzph> 7. Strikingly, our lens modeling based on the JWST data shows that it has a regular disk morphology in the source plane. The dusty region giving rise to the far-IR-to-millimeter emission seems to be confined to a limited region to one side of the disk and has a high dust temperature of >90 K. The galaxy is experiencing starburst both within and outside of this dusty region. After taking the lensing magnification ofμ≈ 2.5–3.6 into account, the intrinsic star formation rate is several hundredMyr−1both within the dusty region and across the more extended stellar disk, and the latter already has >1010Mof stars in place. If it is indeed atz> 7, COSBO-7 presents an extraordinary case that is against the common wisdom about galaxy formation in the early Universe; simply put, its existence poses a critical question to be answered: how could a massive disk galaxy come into being so early in the Universe and sustain its regular morphology in the middle of an enormous starburst? 
    more » « less
  2. Abstract New JWST/NIRCam wide-field slitless spectroscopy provides redshifts for fourz> 8 galaxies located behind the lensing cluster MACS J0416.1−2403. Two of them, “Y1” and “JD,” have previously reported spectroscopic redshifts based on Atacama Large Millimeter/submillimeter Array measurements of [Oiii] 88μm and/or [Cii] 157.7μm lines. Y1 is a merging system of three components, and the existing redshiftz= 8.31 is confirmed. However, JD is atz= 8.34 instead of the previously claimedz= 9.28. JD’s close companion, “JD-N,” which was a previously discoveredz> 8 candidate, is now identified at the same redshift as JD. JD and JD-N form an interacting pair. A new candidate atz> 8, “f090d_018,” is also confirmed and is atz= 8.49. These four objects are likely part of an overdensity that signposts a large structure extending ∼165 kpc in projected distance and ∼48.7 Mpc in radial distance. They are magnified by less than 1 mag and have an intrinsicMUVranging from −19.57 to −20.83 mag. Their spectral energy distributions show that the galaxies are all very young with ages ∼ 4–18 Myr and stellar masses of about 107–8M. These infant galaxies have very different star formation rates ranging from a few to over a hundred solar masses per year, but only two of them (JD and f090d_018) have blue rest-frame UV slopesβ< −2.0 indicative of a high Lyman-continuum photon escape fraction that could contribute significantly to the cosmic hydrogen-reionizing background. Interestingly, these two galaxies are the least massive and least active ones among the four. The other two systems have much flatter UV slopes largely because of their high dust extinction (AV= 0.9–1.0 mag). Their much lower indicated escape fractions show that even very young, actively star-forming galaxies can have a negligible contribution to reionization when they quickly form dust throughout their bodies. 
    more » « less