skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2307827

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In many applications, we seek to recover signals from linear measurements far fewer than the ambient dimension, given the signals have exploitable structures such as sparse vectors or low rank matrices. In this paper, we work in a general setting where signals are approximately sparse in a so-called atomic set. We provide general recovery results stating that a convex programming can stably and robustly recover signals if the null space of the sensing map satisfies certain properties. Moreover, we argue that such null space property can be satisfied with high probability if each measurement is sub-Gaussian even when the number of measurements are very few. Some new results for recovering signals sparse in a frame, and recovering low rank matrices are also derived as a result. 
    more » « less