- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Guo, Fan (2)
-
Li, Xiaocan (2)
-
French, Omar (1)
-
Li, Hui (1)
-
Seo, Jeongbhin (1)
-
Singh, Divjyot (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Magnetic reconnection regions in space and astrophysics are known as active particle acceleration sites. There is ample evidence showing that energetic particles can take a substantial amount of converted energy during magnetic reconnection. However, there has been a lack of studies understanding the backreaction of energetic particles at magnetohydrodynamical scales in magnetic reconnection. To address this, we have developed a new computational method to explore the feedback by nonthermal energetic particles. This approach considers the backreaction from these energetic particles by incorporating their pressure into magnetohydrodynamics (MHD) equations. The pressure of the energetic particles is evaluated from their distribution evolved through Parker’s transport equation, solved using stochastic differential equations (SDEs), so we coin the name MHD-SDE. Applying this method to low-βmagnetic reconnection simulations, we find that reconnection is capable of accelerating a large fraction of energetic particles that contain a substantial amount of energy. When the feedback from these particles is included, their pressure suppresses the compression structures generated by magnetic reconnection, thereby mediating particle energization. Consequently, the feedback from energetic particles results in a steeper power-law energy spectrum. These findings suggest that feedback from nonthermal energetic particles plays a crucial role in magnetic reconnection and particle acceleration.more » « less
-
Singh, Divjyot; French, Omar; Guo, Fan; Li, Xiaocan (, The Astrophysical Journal)Abstract Relativistic magnetic turbulence has been proposed as a process for producing nonthermal particles in high-energy astrophysics. The particle energization may be contributed by both magnetic reconnection and turbulent fluctuations, but their interplay is poorly understood. It has been suggested that during magnetic reconnection the parallel electric field dominates the particle acceleration up to the lower bound of the power-law particle spectrum, but recent studies show that electric fields perpendicular to the magnetic field can play an important, if not dominant role. In this study, we carry out two-dimensional fully kinetic particle-in-cell simulations of magnetically dominated decaying turbulence in a relativistic pair plasma. For a fixed magnetization parameterσ0 = 20, we find that the injection energyεinjconverges with increasing domain size toεinj ≃ 10mec2. In contrast, the power-law index, the cut-off energy, and the power-law extent increase steadily with domain size. We trace a large number of particles and evaluate the contributions of the work done by the parallel (W∥) and perpendicular (W⊥) electric fields during both the injection phase and the postinjection phase. We find that during the injection phase, theW⊥contribution increases with domain size, suggesting that it may eventually dominate injection for a sufficiently large domain. In contrast, on average, both components contribute equally during the postinjection phase, insensitive to the domain size. For high energy (ε ≫ εinj) particles,W⊥dominates the subsequent energization. These findings may improve our understanding of nonthermal particles and their emissions in astrophysical plasmas.more » « less
An official website of the United States government
