Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Virgo Filament Survey (VFS) is a comprehensive study of galaxies that reside in the extended filamentary structures surrounding the Virgo Cluster, out to 12 virial radii. The primary goal is to characterize all of the dominant baryonic components within galaxies and to understand whether and how they are affected by the filament environment. A key constituent of VFS is a narrowband Hαimaging survey of over 600 galaxies, VFS-Hα. The Hαimages reveal detailed, resolved maps of the ionized gas and massive star formation. This imaging is particularly powerful as a probe of environmentally induced quenching because different physical processes affect the spatial distribution of star formation in different ways. In this paper, we present the first results from the VFS-Hαfor the NGC 5364 group, a low-mass ( ) system located at the western edge of the Virgo III filament. We combine Hαimaging with resolved Hiobservations from MeerKAT for eight group members. These galaxies exhibit peculiar morphologies, including strong distortions in the stars and the gas, truncated Hiand Hαdisks, H itails, extraplanar Hαemission, and off-center Hαemission. These signatures are suggestive of environmental processing such as tidal interactions, ram pressure stripping, and starvation. We quantify the role of ram pressure stripping expected in this group, and find that it can explain the cases of Hitails and truncated Hαfor all but one of the disk-dominated galaxies. Our observations indicate that multiple physical mechanisms are disrupting the baryon cycle in these group galaxies.more » « lessFree, publicly-accessible full text available May 15, 2026
-
Abstract Recent theoretical work and targeted observational studies suggest that filaments are sites of galaxy preprocessing. The aim of the WISESize project is to directly probe galaxies over the full range of environments to quantify and characterize extrinsic galaxy quenching in the local universe. In this paper, we useGALFITto measure the IR 12μm (R12) and 3.4μm (R3.4) effective radii of 603 late-type galaxies in and surrounding the Virgo cluster. We find that Virgo cluster galaxies show smaller star-forming disks relative to their field counterparts at the 2.5σlevel, while filament galaxies show smaller star-forming disks to almost 1.5σ. Our data, therefore, show that cluster galaxies experience significant effects on their star-forming disks prior to their final quenching period. There is also tentative support for the hypothesis that galaxies are preprocessed in filamentary regions surrounding clusters. On the other hand, galaxies belonging to rich groups and poor groups do not differ significantly from those in the field. We additionally find hints of a positive correlation between stellar mass and size ratio for both rich group and filament galaxies, though the uncertainties on these data are consistent with no correlation. We compare our size measurements with the predictions from two variants of a state-of-the-art semi-analytic model (SAM), one which includes starvation and the other incorporating both starvation and ram pressure stripping (RPS). Our data appear to disfavor the SAM, which includes RPS for the rich group, filament, and cluster samples, which contributes to improved constraints for general models of galaxy quenching.more » « less
-
Galaxy evolution depends on the environment in which galaxies are located. The various physical processes (ram-pressure stripping, tidal interactions, etc.) that are able to affect the gas content in galaxies have different efficiencies in different environments. In this work, we examine the gas (atomic HI and molecular H2) content of local galaxies inside and outside clusters, groups, and filaments as well as in isolation using a combination of observational and simulated data. We exploited a catalogue of galaxies in the Virgo cluster (including the surrounding filaments and groups) and compared the data against the predictions of the Galaxy Evolution and Assembly (GAEA) semi-analytic model, which has explicit prescriptions for partitioning the cold gas content in its atomic and molecular phases. We extracted from the model both a mock catalogue that mimics the observational biases and one not tailored to observations in order to study the impact of observational limits on the results and predict trends in regimes not covered by the current observations. The observations and simulated data show that galaxies within filaments exhibit intermediate cold gas content between galaxies in clusters and in isolation. The amount of HI is typically more sensitive to the environment than H2and low-mass galaxies (log10[M⋆/M⊙]< 10) are typically more affected than their massive (log10[M⋆/M⊙]> 10) counterparts. Considering only model data, we identified two distinct populations among filament galaxies present in similar proportions: those simultaneously lying in groups and isolated galaxies. The former has properties more similar to cluster and group galaxies, and the latter is more similar to those of field galaxies. We therefore did not detect the strong effects of filaments themselves on the gas content of galaxies, and we ascribe the results to the presence of groups in filaments.more » « less
An official website of the United States government
