skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2308141

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract While binary merger events have been an active area of study in both simulations and observational work, the formation channels by which a high-mass star extends from Roche lobe overflow (RLO) in a decaying orbit of a black-hole (BH) companion to a binary black-hole (BBH) system merits further investigation. Variable length-scales must be employed to accurately represent the dynamical fluid transfer and morphological development of the primary star as it conforms to a diminishing Roche lobe under the runaway influence of the proximal BH. We have simulated and evolved binary mass flow under these conditions to better identify the key transitional processes from RLO to BBHs. We demonstrate a new methodology to model RLO systems to unprecedented resolution simultaneously across the envelope, donor wind, tidal stream, and accretion disk regimes without reliance upon previously universal symmetry, mass flux, and angular momentum flux assumptions. We have applied this method to the semidetached high-mass X-ray binary M33 X-7 in order to provide a direct comparison to recent observations of an RLO candidate system at two overflow states of overfilling factorsf= 1.01 andf= 1.1. We found extreme overflow (f= 1.1) to be entirely conservative in both mass and angular momentum transport, forming a conical L1 tidal stream of density and deflected angle comparable to existing predictions. This case lies within the unstable mass transfer (MT) regime as recently proposed of M33 X-7. Thef= 1.01 case differed in stream geometry, accretion disk size, and efficiency, demonstrating nonconservative stable MT through a ballistic uniform-width stream. The nonconservative and stable nature of thef= 1.01 case MT also suggests that existing assumptions of semidetached binaries undergoing RLO may mischaracterize their role and distribution as progenitors of BBHs and common envelopes. 
    more » « less