Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study the problem of jointly pricing and designing a smart transit system, where a transit agency (the platform) controls a fleet of demand-responsive vehicles (cars) and a fixed line service (buses). The platform offers commuters a menu of options (modes) to travel between origin and destination (e.g., direct car trip, a bus ride, or a combination of the two), and commuters make a utility-maximizing choice within this menu, given the price of each mode. The goal of the platform is to determine an optimal set of modes to display to commuters, prices for these modes, and the design of the transit network in order to maximize the social welfare of the system. In this work, we tackle the commuter choice aspect of this problem, traditionally approached via computationally intensive bilevel programming techniques. In particular, we develop a framework that efficiently decouples the pricing and network design problem: Given an efficient (approximation) algorithm for centralized network design without prices, there exists an efficient (approximation) algorithm for decentralized network design with prices and commuter choice. We demonstrate the practicality of our framework via extensive numerical experiments on a real-world data set. We moreover explore the dependence of metrics such as welfare, revenue, and mode usage on (i) transfer costs and (ii) cost of contracting with on-demand service providers and exhibit the welfare gains of a fully integrated mobility system. Funding: This work was supported by the National Science Foundation [Awards CMMI-2308750, CNS-1952011, and CMMI-2144127]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0452 .more » « lessFree, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available November 18, 2025
-
Assortment optimization finds many important applications in both brick-and-mortar and online retailing. Decision makers select a subset of products to offer to customers from a universe of substitutable products, based on the assumption that customers purchase according to a Markov chain choice model, which is a very general choice model encompassing many popular models. The existing literature predominantly assumes that the customer arrival process and the Markov chain choice model parameters are given as input to the stochastic optimization model. However, in practice, decision makers may not have this information and must learn them while maximizing the total expected revenue on the fly. In “Online Learning for Constrained Assortment Optimization under the Markov Chain Choice Model,” S. Li, Q. Luo, Z. Huang, and C. Shi developed a series of online learning algorithms for Markov chain choice-based assortment optimization problems with efficiency, as well as provable performance guarantees.more » « less
An official website of the United States government
