skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2309025

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present an optimization principle for the Harper-Hofstadter model that naturally yields the critical value 𝜆=2 for the Harper parameter. We provide proofs for this principle and its corollaries. We demonstrate that it can be applied to a continuum model, where it can be used to find the physical parameters for criticality. 
    more » « less
    Free, publicly-accessible full text available February 5, 2026
  2. We examine the spectrum and quantum states of small lattices with cylindrical and toroidal topology subject to a scalar gauge potential that introduces a position dependent phase in the inter-site coupling. Equivalency of gauges assumed in infinite lattices is generally lost due to the periodic boundary conditions, and conditions that restore it are identified. We trace the impact of various system parameters including gauge choice, boundary conditions and inter-site coupling strengths, and an additional axial field. We find gauge dependent appearance of avoided crossings and persistent degeneracies, and we show their impact on the associated eigenstates. Smaller lattices develop prominent gaps in spectral lines associated with edge states, which are suppressed in the thermodynamic limit. Toroidal lattices have counterparts of most of the features observed in cylindrical lattices, but notably they display a transition from localization to delocalization determined by the relation between the field parameter and the number of lattice sites. 
    more » « less
  3. Two species of mutually interacting ultracold bosonic atoms are studied in a ring-shaped trap with a species-selective azimuthal lattice which may rotate. We examine the spectrum and the states in a collective spin formalism. The system can be modeled as a pair of coupled Lipkin-Meshkov-Glick Hamiltonians, and can be used to generate a high degree of entanglement. The Hamiltonian has two components: a linear part that can be controlled by manipulating the azimuthal lattice, and an interaction-dependent quadratic part. Exact solutions are found for the quadratic part for equal strengths of intraspecies and interspecies interactions. In different regimes the Hamiltonian can emulate a beam splitter or a two-mode squeezer of quantum optical systems. We study entanglement properties of the ground state of the Hamiltonian in dependence on various parameters with the prospect of possible quantum information and metrology applications. 
    more » « less