skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2309191

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Asymptotically flat spacetimes have been studied in five separate regions: future/past timelike infinity i ± , future/past null infinity, and spatial infinityi0. We formulate assumptions and definitions such that the five infinities share a single Bondi–Metzner–Sachs (BMS) group of asymptotic symmetries and associated charges. We show how individual ingoing/outgoing massive bodies may be ascribed initial/final BMS charges and derive global conservation laws stating that the change in total charge is balanced by the corresponding radiative flux. This framework provides a foundation for the study of asymptotically flat spacetimes containing ingoing and outgoing massive bodies, i.e. for generalized gravitational scattering. Among the new implications are rigorous definitions for quantities like initial/final spin, scattering angle, and impact parameter in multi-body spacetimes, without the use of any preferred background structure. 
    more » « less
  2. Free, publicly-accessible full text available February 1, 2026