Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available February 28, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 31, 2025
-
Free, publicly-accessible full text available December 1, 2025
-
A nonlocal phase-field crystal (NPFC) model is presented as a nonlocal counterpart of the local phase-field crystal (LPFC) model and a special case of the structural PFC (XPFC) derived from classical field theory for crystal growth and phase transition. The NPFC incorporates a finite range of spatial nonlocal interactions that can account for both repulsive and attractive effects. The specific form is data-driven and determined by a fitting to the materials structure factor, which can be much more accurate than the LPFC and previously proposed fractional variant. In particular, it is able to match the experimental data of the structure factor up to the second peak, an achievement not possible with other PFC variants studied in the literature. Both LPFC and fractional PFC (FPFC) are also shown to be distinct scaling limits of the NPFC, which reflects the generality. The advantage of NPFC in retaining material properties suggests that it may be more suitable for characterizing liquid–solid transition systems. Moreover, we study numerical discretizations using Fourier spectral methods, which are shown to be convergent and asymptotically compatible, making them robust numerical discretizations across different parameter ranges. Numerical experiments are given in the two-dimensional case to demonstrate the effectiveness of the NPFC in simulating crystal structures and grain boundaries.more » « less
-
In this paper, we consider a class of discontinuous Galerkin (DG) methods for one-dimensional nonlocal diffusion (ND) problems. The nonlocal models, which are integral equations, are widely used in describing many physical phenomena with long-range interactions. The ND problem is the nonlocal analog of the classic diffusion problem, and as the interaction radius (horizon) vanishes, then the nonlocality disappears and the ND problem converges to the classic diffusion problem. Under certain conditions, the exact solution to the ND problem may exhibit discontinuities, setting it apart from the classic diffusion problem. Since the DG method shows its great advantages in resolving problems with discontinuities in computational fluid dynamics over the past several decades, it is natural to adopt the DG method to compute the ND problems. Based on [Q. Du, L. Ju, J. Lu and X. Tian,Commun. Appl. Math. Comput. 2 (2020) 31–55], we develop the DG methods with different penalty terms, ensuring that the proposed DG methods have local counterparts as the horizon vanishes. This indicates the proposed methods will converge to the existing DG schemes as the horizon vanishes, which is crucial for achievingasymptotic compatibility. Rigorous proofs are provided to demonstrate the stability, error estimates, and asymptotic compatibility of the proposed DG schemes. To observe the effect of the nonlocal diffusion, we also consider the time-dependent convection–diffusion problems with nonlocal diffusion. We conduct several numerical experiments, including accuracy tests and Burgers’ equation with nonlocal diffusion, and various horizons are taken to show the good performance of the proposed algorithm and validate the theoretical findings.more » « less
An official website of the United States government
