skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2309376

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum algorithms usually are described via quantum circuits representable as unitary operators. Synthesizing the unitary operators described mathematically in terms of the unitary operators recognizable as quantum circuits is essential. One such a challenge lies in the Hamiltonian simulation problem, where the matrix exponential of a large-scale skew-Hermitian matrix is to be computed. Most current techniques are prone to approximation errors, whereas the parametrization of the underlying Hamiltonian via the Cartan decomposition is more promising. To prepare for such a simulation, this work proposes to tackle the Cartan decomposition by means of the Lax dynamics. The advantages include not only that it is numerically feasible with no matrices involved, but also that this approach offers a genuine unitary synthesis within the integration errors. This work contributes to the theoretic and algorithmic foundations in three aspects: exploiting the quaternary representation of Hamiltonian subalgebras; describing a common mechanism for deriving the Lax dynamics; and providing a mathematical theory of convergence. 
    more » « less
    Free, publicly-accessible full text available February 20, 2026
  2. This article reports an experimental work that unveils some interesting yet unknown phenomena underneath all smooth nonlinear maps. The findings are based on the fact that, generalizing the conventional gradient dynamics, the right singular vectors of the Jacobian matrix of any differentiable map point in directions that are most pertinent to the infinitesimal deformation of the underlying function and that the singular values measure the rate of deformation in the corresponding directions. A continuous adaption of these singular vectors, therefore, constitutes a natural moving frame that carries indwelling information of the variation. This structure exists in any dimensional space, but the development of the fundamental theory and algorithm for surface exploration is an important first step for immediate application and further generalization. In this case, trajectories of these singular vectors, referred to as singular curves, unveil some intriguing patterns per the given function. At points where singular values coalesce, curious and complex behaviors occur, manifesting specific landmarks for the function. Upon analyzing the dynamics, it is discovered that there is a remarkably simple and universal structure underneath all smooth two-parameter maps. This work delineates graphs with this interesting dynamical system and the possible new discovery that, analogous to the double helix with two base parings in DNA, two strands of critical curves and eight base pairings could encode properties of a generic and arbitrary surface. This innate structure suggests that this approach could provide a unifying paradigm in functional genetics, where all smooth surfaces could be genome-sequenced and classified accordingly. Such a concept has sparked curiosity and warrants further investigation. 
    more » « less