skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2309634

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> Covariant phase space methods are applied to the analysis of a causal diamond in 2+1-dimensional pure Einstein gravity. It is found that the reduced phase space is parametrized by a family of charges with a dual geometrical interpretation: they are geometric observables on the corner of the diamond, and they generate diffeomorphisms. The Poisson brackets among them close into an algebra. Knowledge of the corner charges therefore permits reconstruction of the diamond geometry, which realizes a form of local holography. The results are contrasted with the literature, and the path to a quantum description of spacetime geometry is discussed. 
    more » « less
  2. Free, publicly-accessible full text available December 1, 2026
  3. A charged particle in a suitably strong magnetic field spirals along the field lines while slowly drifting transversely. This note provides a brief derivation of an effective Lagrangian formulation for the guiding-centre approximation that captures this dynamics without resolving the gyro motion. It also explains how the effective Lagrangian may, for special magnetic fields, admit a ‘quasi-symmetry’ which can give rise to a conserved quantity helpful for plasma confinement in fields lacking a geometric isometry. The aim of this note is to offer a pedagogical introduction and some perspectives on this well-established subject. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  4. The gravitational path integral is usually implemented with a covariant action by analogy with other gauge field theories, but the gravitational case is different in important ways. A key difference is that the integrand has an essential singularity, which occurs at zero lapse where the spacetime metric degenerates. The lapse integration contour required to impose the local time reparametrization constraints must run from to + , yet must not pass through zero. This raises the question: for an application—such as a partition function—where the constraints should be imposed, what is the correct integration contour, and why? We study that question by starting with the reduced phase space path integral, which involves no essential singularity. We observe that if the momenta are to be integrated before the lapse, to obtain a configuration space path integral, the lapse contour should pass below the origin in the complex lapse plane. This contour is also consistent with the requirement that quantum field fluctuation amplitudes have the usual short distance vacuum form, and with obtaining the Bekenstein-Hawking horizon entropy from a Lorentzian path integral. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  5. Free, publicly-accessible full text available February 1, 2026
  6. Nonrelativistic axions can be efficiently produced in the polar caps of pulsars, resulting in the formation of a dense cloud of gravitationally bound axions. Here, we investigate the interplay between such an axion cloud and the electrodynamics in the pulsar magnetosphere, focusing specifically on the dynamics in the polar caps, where the impact of the axion cloud is expected to be most pronounced. For sufficiently light axions m a 10 7 eV , we show that the axion cloud can occasionally screen the local electric field responsible for particle acceleration and pair production, inducing a periodic nulling of the pulsar’s intrinsic radio emission. At larger axion masses, the small-scale fluctuations in the axion field tend to suppress the backreaction of the axion on the electrodynamics; however, we point out that the incoherent oscillations of the axion in short-lived regions of vacuum near the neutron star surface can produce a narrow radio line, which provides a complementary source of radio emission to the plasma-resonant emission processes identified in previous work. While this Letter focuses on the leading order correction to pair production in the magnetosphere, we speculate that there can exist dramatic deviations in the electrodynamics of these systems when the axion backreaction becomes nonlinear. Published by the American Physical Society2024 
    more » « less