Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 15, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available December 5, 2025
-
Liquid droplet dynamics are widely used in biological and engineering applications, which contain complex interfacial instabilities and pattern formation such as droplet merging, splitting and transport. This paper studies a class of mean field control formulations for these droplet dynamics, which can be used to control and manipulate droplets in applications. We first formulate the droplet dynamics as gradient flows of free energies in modified optimal transport metrics with nonlinear mobilities. We then design an optimal control problem for these gradient flows. As an example, a lubrication equation for a thin volatile liquid film laden with an active suspension is developed, with control achieved through its activity field. Lastly, we apply the primal–dual hybrid gradient algorithm with high-order finite-element methods to simulate the proposed mean field control problems. Numerical examples, including droplet formation, bead-up/spreading, transport, and merging/splitting on a two-dimensional spatial domain, demonstrate the effectiveness of the proposed mean field control mechanism.more » « lessFree, publicly-accessible full text available November 25, 2025
-
This paper considers the control of fluid on a solid vertical fiber, where the fiber radius is larger than the film thickness. The fluid dynamics is governed by a fourth-order partial differential equation (PDE) that models this flow regime. Fiber coating is affected by the Rayleigh–Plateau instability that leads to breakup into moving droplets. In this work, we show that control of the film profile can be achieved by dynamically altering the input flux to the fluid system that appears as a boundary condition of the PDE. We use the optimal control methodology to compute the control function. This method entails solving a minimization of a given cost function over a time horizon. We formally derive the optimal control conditions, and numerically verify that subject to the domain length constraint, the thin film equation can be controlled to generate a desired film profile with a single point of actuation. Specifically, we show that the system can be driven to both constant film profiles and traveling waves of certain speeds.more » « less
An official website of the United States government
