Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Localized surface plasmons produced by gold and silver nanostructures have been utilized to enhance the intensity of fluorophore molecules. The issue with using nanostructure plasmons for fluorescence enhancement is their short-range nature (5–50 nm from the nanostructures), which limits accessibility to a few molecules. In addition, fluorophore dipoles needed to be aligned with the plasmon electric fields to maximize the fluorescence enhancement. To address these issues, we used low-frequency electric fields (<5 MHz) and commercially available nanorod and nanosphere samples and studied their effectiveness in enhancing the fluorescence of fluorophore-labeled short single-stranded DNA molecules (22 bases). We demonstrated that DNA molecules and nanorod particles can effectively be manipulated around the charging frequency of DNA molecules (∼3 MHz). Nanorod particles enhanced the fluorescence emission rate by ∼50-fold. When the 3 MHz electric field was introduced, the emission rate increased to over 700-fold. We also found that the introduction of a 3 MHz electric field aided the enhancement of the intrinsic quantum yield fluorophore molecules, which resulted in over a 1000-fold fluorescence enhancement. This enhancement was due to the very high electric produced by polarized DNA dipoles at 3 MHz, which resulted in a torque on fluorophore dipoles and subsequently aligning the fluorophore dipole axis with the plasmon electric field. At a fundamental level, our results demonstrate the role of the low-frequency electric field in the fluorophore–plasmon coupling. These findings can directly be applied to many fluorescence detection systems, including the development of biosensors.more » « less
-
Cell lysis is the starting step of many biomedical assays. Electric field-based cell lysis is widely used in many applications, including point-of-care (POC) applications, because it provides an easy one-step solution. Many electric field-based lysis methods utilize micro-electrodes to apply short electric pulses across cells. Unfortunately, these cell lysis devices produce relatively low cell lysis efficiency as electric fields do not reach a significant portion of cells in the sample. Additionally, the utility of syringe pumps for flow cells in and out of the microfluidics channel causes cell loss and low throughput cell lysis. To address these critical issues, we suspended the cells in a sessile drop and concentrated on the electrodes. We used low-frequency AC electric fields (1 Vpp, 0–100 kHz) to drive the cells effectively towards electrodes and lysed using a short pulse of 10 V. A post-lysis analysis was performed using a hemocytometer, UV-vis spectroscopy, and fluorescence imaging. The results show that the pre-electric polarization of cells, prior to applying short electrical pulses, enhances the cell lysis efficiency. Additionally, the application of AC electric fields to concentrate cells on the electrodes reduces the assay time to about 4 min. In this study, we demonstrated that low-frequency AC electric fields can be used to pre-polarize and concentrate cells near micro-electrodes and improve cell lysis efficiency. Due to the simplicity and rapid cell lysis, this method may be suitable for POC assay development.more » « less
-
Recent progress in microRNA detection using integrated electric fields and optical detection methodsLow-cost, highly-sensitivity, and minimally invasive tests for the detection and monitoring of life-threatening diseases and disorders can reduce the worldwide disease burden. Despite a number of interdisciplinary research efforts, there are still challenges remaining to be addressed, so clinically significant amounts of relevant biomarkers in body fluids can be detected with low assay cost, high sensitivity, and speed at point-of-care settings. Although the conventional proteomic technologies have shown promise, their ability to detect all levels of disease progression from early to advanced stages is limited to a limited number of diseases. One potential avenue for early diagnosis is microRNA (miRNA). Due to their upstream positions in regulatory cascades, blood-based miRNAs are sensitive biomarkers that are detectable earlier than those targeted by other methods. Therefore, miRNA is a promising diagnostic biomarker for many diseases, including those lacking optimal diagnostic tools. Electric fields have been utilized to develop various biomedical assays including cell separation, molecules detection and analysis. Recently, there has been a great interest in the utility of electric fields with optical detection methods, including fluorescence and surface plasmons toward biomarker detection. This mini review first summarizes the recent development of miRNA as a biomarker. Second, the utility of electric fields and their integration with fluorescence detection methods will be discussed. Next, recent studies that utilized electric fields and optical detection methods will be discussed. Finally, in conclusion, technology gaps and improvements needed to enable low-cost and sensitive biomarker detection in point-of-care settings will be discussed.more » « less
An official website of the United States government
