skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2310223

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> Given a manifold$$ \mathbbm{M} $$ M admitting a maximally supersymmetric consistent truncation, we show how to formulate new consistent truncations by restricting to a set of Kaluza-Klein modes on$$ \mathbbm{M} $$ M invariant under some subgroup of the group of isometries of$$ \mathbbm{M} $$ M . These truncations may involve either finite or infinite sets of modes. We provide their global description using exceptional generalised geometry to construct a ‘deformed’ generalised parallelisation starting with that on$$ \mathbbm{M} $$ M . This allows us to explicitly embed known consistent truncations directly into exceptional generalised geometry/exceptional field theory, and to obtain the equations governing situations where the consistent truncation retains an infinite tower of modes. 
    more » « less
  2. We derive the explicit embedding of the effective Kerr spacetimes, which are pertinent to the vanishing of static Love numbers, soft hair descriptions of Kerr black holes, and low-frequency scalar-Kerr scattering amplitudes, as solutions within N = 2 supergravity. These spacetimes exhibit a hidden S L ( 2 , R ) × U ( 1 ) or S O ( 4 , 2 ) symmetry resembling the so called subtracted geometries with S L ( 2 , R ) × S L ( 2 , R ) symmetry, which accurately represent the near-horizon geometry of Kerr black holes and, as we will argue most accurately represents the internal structure of the Kerr black hole. To quantify the differences among the effective Kerr spacetimes, we compare their physical quantities, internal structures, and geodesic equations. Although their thermodynamic properties, including entropy, match those of Kerr, our study uncovers significant differences in the interiors of these effective Kerr solutions. A careful examination of the internal structure of the spacetimes highlights the distinctions between various effective Kerr geometries and their quasinormal spectra. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  3. We present a new gauging of maximal supergravity in five spacetime dimensions with gauge group containing ISO(5), involving the local scaling symmetry of the metric, and admitting a supersymmetric anti–de Sitter vacuum. We show this maximal supergravity to arise by consistent truncation of M theory on the (nonspherical, nonparallelizable) six-dimensional geometry associated to a stack of N M5 branes wrapped on a smooth Riemann surface. The existence of this truncation allows us to holographically determine the complete, universal spectrum of light operators of the dual four-dimensional N = 2 theory of class S . We then compute holographically the superconformal index of the dual field theory at large N , finding perfect agreement with previously known field theory results in specific limits. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026