Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
Free, publicly-accessible full text available July 13, 2026
-
Machine learning has enabled differential cross section measurements that are not discretized. Going beyond the traditional histogram-based paradigm, these unbinned unfolding methods are rapidly being integrated into experimental workflows. In order to enable widespread adaptation and standardization, we develop methods, benchmarks, and software for unbinned unfolding. For methodology, we demonstrate the utility of boosted decision trees for unfolding with a relatively small number of high-level features. This complements state-of-the-art deep learning models capable of unfolding the full phase space. To benchmark unbinned unfolding methods, we develop an extension of existing dataset to include acceptance effects, a necessary challenge for real measurements. Additionally, we directly compare binned and unbinned methods using discretized inputs for the latter in order to control for the binning itself. Lastly, we have assembled two software packages for the OmniFold unbinned unfolding method that should serve as the starting point for any future analyses using this technique. One package is based on the widely-used RooUnfold framework and the other is a standalone package available through the Python Package Index (PyPI).more » « lessFree, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available April 18, 2026
-
Arratia, M; Milton, R; Mikuni, V; Nachman, B; Pan, J; Torales_Acosta, F; Wamorkar, T (Ed.)Free, publicly-accessible full text available March 25, 2026
-
Z boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from standard model predictions. All previous measurements of Z boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called omnifold is used to produce a simultaneous measurement of twenty-four Z+jets observables using 139β/fb of proton-proton collisions at sqrt(s) =ββTeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible reuse in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.more » « less
An official website of the United States government
