Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present a novel method for faster physics simulations of elastic solids. Our key idea is to reorder the unknown variables according to the Fiedler vector (i.e., the second-smallest eigenvector) of the combinatorial Laplacian. It is well known in the geometry processing community that the Fiedler vector brings together vertices that are geometrically nearby, causing fewer cache misses when computing differential operators. However, to the best of our knowledge, this idea has not been exploited to accelerate simulations of elastic solids which require an expensive linear (or non-linear) system solve at every time step. The cost of computing the Fiedler vector is negligible, thanks to an algebraic Multigrid-preconditioned Conjugate Gradients (AMGPCG) solver. We observe that our AMGPCG solver requires approximately 1 s for computing the Fiedler vector for a mesh with approximately 50Kvertices or 100Ktetrahedra. Our method provides a speed-up between$$10\%$$ –$$30\%$$ at every time step, which can lead to considerable savings, noting that even modest simulations of elastic solids require at least 240 time steps. Our method is easy to implement and can be used as a plugin for speeding up existing physics simulators for elastic solids, as we demonstrate through our experiments using the Vega library and the ADMM solver, which use different algorithms for elasticity.more » « less
-
Our RLibm project has recently proposed methods to generate a single implementation for an elementary function that produces correctly rounded results for multiple rounding modes and representations with up to 32-bits. They are appealing for developing fast reference libraries without double rounding issues. The key insight is to build polynomial approximations that produce the correctly rounded result for a representation with two additional bits when compared to the largest target representation and with the “non-standard” round-to-odd rounding mode, which makes double rounding the RLibm math library result to any smaller target representation innocuous. The resulting approximations generated by the RLibm approach are implemented with machine supported floating-point operations with the round-to-nearest rounding mode. When an application uses a rounding mode other than the round-to-nearest mode, the RLibm math library saves the application’s rounding mode, changes the system’s rounding mode to round-to-nearest, computes the correctly rounded result, and restores the application’s rounding mode. This frequent change of rounding modes has a performance cost. This paper proposes two new methods, which we call rounding-invariant outputs and rounding-invariant input bounds, to avoid the frequent changes to the rounding mode and the dependence on the round-to-nearest mode. First, our new rounding-invariant outputs method proposes using the round-to-zero rounding mode to implement RLibm’s polynomial approximations. We propose fast, error-free transformations to emulate a round-to-zero result from any standard rounding mode without changing the rounding mode. Second, our rounding-invariant input bounds method factors any rounding error due to different rounding modes using interval bounds in the RLibm pipeline. Both methods make a different set of trade-offs and improve the performance of resulting libraries by more than 2×more » « lessFree, publicly-accessible full text available June 18, 2026
-
Tensegrity robots are composed of rigid struts and flexible cables. They constitute an emerging class of hybrid rigid-soft robotic systems and are promising systems for a wide array of applications, ranging from locomotion to assembly. They are difficult to control and model accurately, however, due to their compliance and high number of degrees of freedom. To address this issue, prior work has introduced a differentiable physics engine designed for tensegrity robots based on first principles. In contrast, this work proposes the use of graph neural networks to model contact dynamics over a graph representation of tensegrity robots, which leverages their natural graph-like cable connectivity between end caps of rigid rods. This learned simulator can accurately model 3-bar and 6-bar tensegrity robot dynamics in simulation-to-simulation experiments where MuJoCo is used as the ground truth. It can also achieve higher accuracy than the previous differentiable engine for a real 3-bar tensegrity robot, for which the robot state is only partially observable. When compared against direct applications of recent mesh-based graph neural network simulators, the proposed approach is computationally more efficient, both for training and inference, while achieving higher accuracy. Code and data are available at https://github.com/nchen9191/tensegrity_gnn_simulator_publicmore » « lessFree, publicly-accessible full text available November 6, 2025
-
This paper proposes a novel method to efficiently solveinfeasiblelow-dimensional linear programs (LDLPs) with billions of constraints and a small number of unknown variables, where all the constraints cannot be satisfied simultaneously. We focus on infeasible linear programs generated in the RLibmproject for creating correctly rounded math libraries. Specifically, we are interested in generating a floating point solution that satisfies the maximum number of constraints. None of the existing methods can solve such large linear programs while producing floating point solutions. We observe that the convex hull can serve as an intermediate representation (IR) for solving infeasible LDLPs using the geometric duality between linear programs and convex hulls. Specifically, some of the constraints that correspond to points on the convex hull are precisely those constraints that make the linear program infeasible. Our key idea is to split the entire set of constraints into two subsets using the convex hull IR: (a) a set of feasible constraints and (b) a superset of infeasible constraints. Using the special structure of the RLibmconstraints and the presence of a method to check whether a system is feasible or not. we identify a superset of infeasible constraints by computing the convex hull in 2-dimensions. Subsequently, we identify the key constraints (i.e., basis constraints) in the set of feasible constraints and use them to create a new linear program whose solution identifies the maximum set of constraints satisfiable in while satisfying all the constraints in . This new solver enabled us to improve the performance of the resulting RLibmpolynomials while solving the corresponding linear programs significantly faster.more » « less
-
Many geometry processing techniques require the solution of partial differential equations (PDEs) on manifolds embedded in\(\mathbb {R}^2 \)or\(\mathbb {R}^3 \), such as curves or surfaces. Suchmanifold PDEsoften involve boundary conditions (e.g., Dirichlet or Neumann) prescribed at points or curves on the manifold’s interior or along the geometric (exterior) boundary of an open manifold. However, input manifolds can take many forms (e.g., triangle meshes, parametrizations, point clouds, implicit functions, etc.). Typically, one must generate a mesh to apply finite element-type techniques or derive specialized discretization procedures for each distinct manifold representation. We propose instead to address such problems in a unified manner through a novel extension of theclosest point method(CPM) to handle interior boundary conditions. CPM solves the manifold PDE by solving a volumetric PDE defined over the Cartesian embedding space containing the manifold, and requires only a closest point representation of the manifold. Hence, CPM supports objects that are open or closed, orientable or not, and of any codimension. To enable support for interior boundary conditions we derive a method that implicitly partitions the embedding space across interior boundaries. CPM’s finite difference and interpolation stencils are adapted to respect this partition while preserving second-order accuracy. Additionally, we develop an efficient sparse-grid implementation and numerical solver that can scale to tens of millions of degrees of freedom, allowing PDEs to be solved on more complex manifolds. We demonstrate our method’s convergence behaviour on selected model PDEs and explore several geometry processing problems: diffusion curves on surfaces, geodesic distance, tangent vector field design, harmonic map construction, and reaction-diffusion textures. Our proposed approach thus offers a powerful and flexible new tool for a range of geometry processing tasks on general manifold representations.more » « less
An official website of the United States government
