Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 31, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 11, 2025
-
Free, publicly-accessible full text available December 2, 2025
-
A two-input function is a dual PRF if it is a PRF when keyed by either of its inputs. Dual PRFs are assumed in the design and analysis of numerous primitives and protocols including HMAC, AMAC, TLS 1.3 and MLS. But, not only do we not know whether particular functions on which the assumption is made really are dual PRFs; we do not know if dual PRFs even exist. What if the goal is impossible? This paper addresses this with a foundational treatment of dual PRFs, giving constructions based on standard assumptions. This provides what we call a generic validation of the dual PRF assumption. Our approach is to introduce and construct symmetric PRFs, which imply dual PRFs and may be of independent interest. We give a general construction of a symmetric PRF based on a function having a weak form of collision resistance coupled with a leakage hardcore function, a strengthening of the usual notion of hardcore functions we introduce. We instantiate this general construction in two ways to obtain two specific symmetric and dual PRFs, the first assuming any collision-resistant hash function and the second assuming any one-way permutation. A construction based on any one-way function evades us and is left as an intriguing open problem.more » « less
An official website of the United States government

Full Text Available