Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            Free, publicly-accessible full text available December 10, 2025
- 
            Free, publicly-accessible full text available December 10, 2025
- 
            The concurrent execution of deep neural networks (DNN) inference tasks on intermittently-powered batteryless devices (IPDs) has recently garnered much attention due to its potential in a broad range of smart sensing applications. While the checkpointing mechanisms (CMs) provided by the state-of-the-art make this possible, scheduling inference tasks on IPDs is still a complex problem due to significant performance variations across DNN layers and CM choices. This complexity is further accentuated by dynamic environmental conditions and inherent resource constraints of IPDs. To tackle these challenges, we present MII, a framework designed for intermittence-aware inference and scheduling on IPDs. MII formulates the shutdown and live time functions of an IPD from profiling data, which our offline intermittence-aware search scheme uses to find optimal layer-wise CMs for each task. At runtime, MII enhances job success rates by dynamically making scheduling decisions to mitigate workload losses from power interruptions and adjusting these CMs in response to actual energy patterns. Our evaluation demonstrates the superiority of MII over the state-of-the-art. In controlled environments, MII achieves an average increase of 21% and 39% in successful jobs under stable and dynamic energy patterns. In real-world settings, MII achieves 33% and 24% more successful jobs indoors and outdoors.more » « less
- 
            Natural language processing (NLP) has gained widespread adoption in the development of real-world applications. However, the black-box nature of neural networks in NLP applications poses a challenge when evaluating their performance, let alone ensuring it. Recent research has proposed testing techniques to enhance the trustworthiness of NLP-based applications. However, most existing works use a single, aggregated metric (i.e., accuracy) which is difficult for users to assess NLP model performance on fine-grained aspects, such as LCs. To address this limitation, we present ALiCT, an automated testing technique for validating NLP applications based on their LCs. ALiCT takes user-specified LCs as inputs and produces diverse test suite with test oracles for each of given LC. We evaluate ALiCT on two widely adopted NLP tasks, sentiment analysis and hate speech detection, in terms of diversity, effectiveness, and consistency. Using Self-BLEU and syntactic diversity metrics, our findings reveal that ALiCT generates test cases that are 190% and 2213% more diverse in semantics and syntax, respectively, compared to those produced by state-of-the-art techniques. In addition, ALiCT is capable of producing a larger number of NLP model failures in 22 out of 25 LCs over the two NLP applications.more » « less
- 
            Deep learning-based code generation (DL-CG) applications have shown great potential for assisting developers in programming with human-competitive accuracy. However, lacking transparency in such applications due to the uninterpretable nature of deep learning models makes the automatically generated programs untrustworthy. In this paper, we develop DeciX, a first explanation method dedicated to DL-CG applications. DeciX is motivated by observing two unique properties of DL-CG applications: output-to-output dependencies and irrelevant value and semantic space. These properties violate the fundamental assumptions made in existing explainable DL techniques and thus cause applying existing techniques to DL-CG applications rather pessimistic and even incorrect. DeciX addresses these two limitations by constructing a causal inference dependency graph, containing a novel method leveraging causal inference that can accurately quantify the contribution of each dependency edge in the graph to the end prediction result. Proved by extensive experiments assessing popular, widely-used DL-CG applications and several baseline methods, DeciX is able to achieve significantly better performance compared to state-of-the-art in terms of several critical performance metrics, including correctness, succinctness, stability, and overhead. Furthermore, DeciX can be applied to practical scenarios since it does not require any knowledge of the DL-CG model under explanation. We have also conducted case studies that demonstrate the applicability of DeciX in practice.more » « less
- 
            Pellizzoni, Rodolfo (Ed.)Scheduling real-time tasks that utilize GPUs with analyzable guarantees poses a significant challenge due to the intricate interaction between CPU and GPU resources, as well as the complex GPU hardware and software stack. While much research has been conducted in the real-time research community, several limitations persist, including the absence or limited availability of GPU-level preemption, extended blocking times, and/or the need for extensive modifications to program code. In this paper, we propose GCAPS, a GPU Context-Aware Preemptive Scheduling approach for real-time GPU tasks. Our approach exerts control over GPU context scheduling at the device driver level and enables preemption of GPU execution based on task priorities by simply adding one-line macros to GPU segment boundaries. In addition, we provide a comprehensive response time analysis of GPU-using tasks for both our proposed approach as well as the default Nvidia GPU driver scheduling that follows a work-conserving round-robin policy. Through empirical evaluations and case studies, we demonstrate the effectiveness of the proposed approaches in improving taskset schedulability and response time. The results highlight significant improvements over prior work as well as the default scheduling approach, with up to 40% higher schedulability, while also achieving predictable worst-case behavior on Nvidia Jetson embedded platforms.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available