Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
The proliferation of autonomous vehicles (AVs) has made their failures increasingly evident. Testing efforts aimed at identifying the inputs leading to those failures are challenged by the input’s long-tail distribution, whose area under the curve is dominated by rare scenarios. We hypothesize that leveraging emerging open-access datasets can accelerate the exploration of long-tail inputs. Having access to diverse inputs, however, is not sufficient to expose failures; an effective test also requires an oracle to distinguish between correct and incorrect behaviors. Current datasets lack such oracles and developing them is notoriously difficult. In response, we propose DiffTest4AV, a differential testing framework designed to address the unique challenges of testing AV systems: 1) for any given input, many outputs may be considered acceptable, 2) the long tail contains an insurmountable number of inputs to explore, and 3) the AV’s continuous execution loop requires failures to persist in order to affect the system. DiffTest4AV integrates statistical analysis to identify meaningful behavioral variations, judges their importance in terms of the severity of these differences, and incorporates sequential analysis to detect persistent errors indicative of potential system-level failures. Our study on 5 versions of the commercially-available, road-deployed comma.ai OpenPilot system, using 3 available image datasets, demonstrates the capabilities of the framework to detect high-severity, high-confidence, long-running test failures.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Finkbeiner, Bernd; Kovacs, Laura (Ed.)With the growing use of deep neural networks(DNN) in mis- sion and safety-critical applications, there is an increasing interest in DNN verification. Unfortunately, increasingly complex network struc- tures, non-linear behavior, and high-dimensional input spaces combine to make DNN verification computationally challenging. Despite tremen- dous advances, DNN verifiers are still challenged to scale to large ver- ification problems. In this work, we explore how the number of stable neurons under the precondition of a specification gives rise to verifica- tion complexity. We examine prior work on the problem, adapt it, and develop several novel approaches to increase stability. We demonstrate that neuron stability can be increased substantially without compromis- ing model accuracy and this yields a multi-fold improvement in DNN verifier performance.more » « less
An official website of the United States government
