skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2313418

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT BackgroundIn recent years, computer science education has emerged as a necessary part of school curricula for students of all ages. With such momentum in this direction, it is essential that program designers, educators, and researchers ensure that computer science education is designed to be inclusive, effective, and engaging for all students. ObjectiveAccordingly, this paper reports on the design and implementation of an inclusive digital learning platform and accompanying curriculum for scaffolding and integrating coding into writing instruction for elementary‐aged students (approximately ages 9–12). In this paper, we report on teachers' uses of the Compose and Code (CoCo) platform and curriculum, how students used its features, and its influence on students' computational thinking skills and attitudes about coding. MethodData analysed in this mixed‐methods study come from 11 teachers and 595 students in Grades 3–6. Data sources included teacher reflections and interviews, an assessment of computational thinking for students, and a coding attitudes survey for students. Quantitative data were analysed descriptively and using paired samplet‐tests. Qualitative data were analysed inductively using open coding to determine emergent categories. Results and ConclusionFindings indicate that (1) a majority of students effectively used the CoCo platform to plan their work and code in Scratch, with a smaller percentage using the self‐evaluation and self‐monitoring features, (2) teachers indicated overall positive perceptions of the CoCo platform and curriculum, with strong support for using it in the future, (3) students' computational thinking skills improved over the course of the project, with results indicating a large effect size (g = 1.24), and (4) student attitudinal results were mixed, providing insights to the barriers that students face when learning to code. Overall, this study indicates that the CoCo platform and curriculum show promise as a scaffolded, structured, and integrated tool for teaching elementary computer science to elementary grade students. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Free, publicly-accessible full text available August 4, 2026
  3. This study investigated the engagement of elementary-aged students with a diagnosis of Autism Spectrum Disorder in a seven-week after-school robotics and coding program. Researchers examined students’ interaction styles with robotics tools and coding apps, considering their sensory responses and the perceived benefits and challenges. Findings revealed a strong preference for hands-on, physical interaction with robots, although students also enjoyed coding apps when tangible outcomes were visible. Sensory responses to robots varied, highlighting the need for diverse tools and careful environmental design. Parents and staff reported potential benefits such as increased engagement, improved problem-solving skills, and enhanced social interaction. Challenges included the need for flexible, individualized instruction and robust staff training. 
    more » « less
    Free, publicly-accessible full text available May 20, 2026