- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Shi, XiaoLin Danny (4)
-
Zeng, Mingcong (2)
-
Beaudry, Agnès (1)
-
Duan, Zhipeng (1)
-
Hill, Michael (1)
-
Hopkins, Michael (1)
-
Li, Guchuan (1)
-
Lin, Jianfeng (1)
-
Meier, Lennart (1)
-
Xu, Zhouli (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Beaudry, Agnès; Hill, Michael; Shi, XiaoLin Danny; Zeng, Mingcong (, Proceedings of the American Mathematical Society, Series B)We show a number of Toda brackets in the homotopy of the motivic bordism spectrum MGL and of the Real bordism spectrum MUR. These brackets are "red-shifting" in the sense that while the terms in the bracket will be of some chromatic height n, the bracket itself will be of chromatic height (n+1). Using these, we deduce a family of exotic multiplications in the π_{**}MGL-module structure of the motivic Morava K-theories, including non-trivial multiplications by 2. These in turn imply the analogous family of exotic multiplications in the π_{\star}MUR-module structure on the Real Morava K-theories.more » « less
-
Meier, Lennart; Shi, XiaoLin Danny; Zeng, Mingcong (, Advances in Mathematics)
-
Hopkins, Michael; Lin, Jianfeng; Shi, XiaoLin Danny; Xu, Zhouli (, Communications of the American Mathematical Society)In studying the “11/8-Conjecture” on the Geography Problem in 4-dimensional topology, Furuta proposed a question on the existence of Pin ( 2 ) \operatorname {Pin}(2) -equivariant stable maps between certain representation spheres. A precise answer of Furuta’s problem was later conjectured by Jones. In this paper, we completely resolve Jones conjecture by analyzing the Pin ( 2 ) \operatorname {Pin}(2) -equivariant Mahowald invariants. As a geometric application of our result, we prove a “10/8+4”-Theorem. We prove our theorem by analyzing maps between certain finite spectra arising from B Pin ( 2 ) B\operatorname {Pin}(2) and various Thom spectra associated with it. To analyze these maps, we use the technique of cell diagrams, known results on the stable homotopy groups of spheres, and the j j -based Atiyah–Hirzebruch spectral sequence.more » « less
An official website of the United States government
