skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2313842

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We show a number of Toda brackets in the homotopy of the motivic bordism spectrum MGL and of the Real bordism spectrum MUR. These brackets are "red-shifting" in the sense that while the terms in the bracket will be of some chromatic height n, the bracket itself will be of chromatic height (n+1). Using these, we deduce a family of exotic multiplications in the π_{**}MGL-module structure of the motivic Morava K-theories, including non-trivial multiplications by 2. These in turn imply the analogous family of exotic multiplications in the π_{\star}MUR-module structure on the Real Morava K-theories. 
    more » « less
  2. In studying the “11/8-Conjecture” on the Geography Problem in 4-dimensional topology, Furuta proposed a question on the existence of Pin ⁡ ( 2 ) \operatorname {Pin}(2) -equivariant stable maps between certain representation spheres. A precise answer of Furuta’s problem was later conjectured by Jones. In this paper, we completely resolve Jones conjecture by analyzing the Pin ⁡ ( 2 ) \operatorname {Pin}(2) -equivariant Mahowald invariants. As a geometric application of our result, we prove a “10/8+4”-Theorem. We prove our theorem by analyzing maps between certain finite spectra arising from B Pin ⁡ ( 2 ) B\operatorname {Pin}(2) and various Thom spectra associated with it. To analyze these maps, we use the technique of cell diagrams, known results on the stable homotopy groups of spheres, and the j j -based Atiyah–Hirzebruch spectral sequence. 
    more » « less