skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2315343

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Amorphous carbons can have drastically different physical properties depending on synthetic methods. Among these, hydrogenated diamond-like carbon (HDLC) produced via plasma-enhanced chemical vapor deposition is unique in that it exhibits superlubricity with a coefficient of friction (COF) less than 0.01 in proper environmental conditions. It is known that HDLC undergoes friction-induced graphitization at the shear interface and forms a highly hydrogenated transfer film at the counter-surface sliding against it. In contrast, glassy carbon (GC) produced via pyrolysis of organic precursors rarely exhibits superlubricious behavior even though the graphitic nature probed with Raman spectroscopy is similar to that of the transfer film formed from HDLC. This study addresses this drastic difference in friction of HDLC and GC and identifies key parameters that can be tuned to achieve (nearly) superlubricious behaviors with GC. The factors influencing the superlubricity of amorphous carbon include the composition and structure of the initial carbon coating, which strongly depend on the synthetic method, and the coating failure and transfer film stability, which depend on the surface chemistry of the substrate. 
    more » « less
  2. Free, publicly-accessible full text available August 13, 2026
  3. Free, publicly-accessible full text available May 1, 2026