skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2315363

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper describes a new abstract interpretation-based approach to verify temporal safety properties of recursive, higher-order programs. While prior works have provided theoretical impact and some automation, they have had limited scalability. We begin with a new automata-based abstract effect domain for summarizing context-sensitive dependent effects, capable of abstracting relations between the program environment and the automaton control state. Our analysis includes a new transformer for abstracting event prefixes to automatically computed context-sensitive effect summaries, and is instantiated in a type-and-effect system grounded in abstract interpretation. Since the analysis is parametric on the automaton, we next instantiate it to a broader class of history/register (or accumulator) automata, beyond finite state automata to express some context-free properties, input-dependency, event summation, resource usage, cost, equal event magnitude, etc. We implemented a prototype evDrift that computes dependent effect summaries (and validates assertions) for OCaml-like recursive higher-order programs. As a basis of comparison, we describe reductions to assertion checking for higher-order but effect-free programs, and demonstrate that our approach outperforms prior tools Drift, RCaml/Spacer, MoCHi, and ReTHFL. Overall, across a set of 23 benchmarks, Drift verified 12 benchmarks, RCaml/Spacer verified 6, MoCHi verified 11, ReTHFL verified 18, and evDrift verified 21; evDrift also achieved a 6.3x, 5.3x, 16.8x, and 6.4x speedup over Drift, RCaml/Spacer, MoCHi, and ReTHFL, respectively, on those benchmarks that both tools could solve. 
    more » « less
    Free, publicly-accessible full text available October 9, 2026
  2. Commutativity of program code (the equivalence of two code fragments composed in alternate orders) is of ongoing interest in many settings such as program verification, scalable concurrency, and security analysis. While some recent works have explored static analysis for code commutativity, few have specifically catered to heap-manipulating programs. We introduce an abstract domain in which commutativity synthesis or verification techniques can safely be performed on abstract mathematical models and, from those results, one can directly obtain commutativity conditions for concrete heap programs. This approach offloads challenges of concrete heap reasoning into the simpler abstract space. We show this reasoning supports framing and composition, and conclude with commutativity analysis of programs operating on example heap data structures. Our work has been mechanized in Coq and is available in the supplement. 
    more » « less
    Free, publicly-accessible full text available January 20, 2026
  3. Concurrent objects form the foundation of many applications that exploit multicore architectures and their importance has lead to informal correctness arguments, as well as formal proof systems. Correctness arguments (as found in the distributed computing literature) give intuitive descriptions of a few canonical executions or scenarios often each with only a few threads, yet it remains unknown as to whether these intuitive arguments have a formal grounding and extend to arbitrary interleavings over unboundedly many threads. We present a novel proof technique for concurrent objects, based around identifying a small set of scenarios (representative, canonical interleavings), formalized as the commutativity quotient of a concurrent object. We next give an expression language for defining abstractions of the quotient in the form of regular or context-free languages that enable simple proofs of linearizability. These quotient expressions organize unbounded interleavings into a form more amenable to reasoning and make explicit the relationship between implementation-level contention/interference and ADT-level transitions. We evaluate our work on numerous non-trivial concurrent objects from the literature (including the Michael-Scott queue, Elimination stack, SLS reservation queue, RDCSS and Herlihy-Wing queue). We show that quotients capture the diverse features/complexities of these algorithms, can be used even when linearization points are not straight-forward, correspond to original authors' correctness arguments, and provide some new scenario-based arguments. Finally, we show that discovery of some object's quotients reduces to two-thread reasoning and give an implementation that can derive candidate quotients expressions from source code. 
    more » « less