skip to main content


Search for: All records

Award ID contains: 2316143

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Here we present results of gas selectivity and diffusion of different gases (C2H6, C2H4, C3H8, C3H6, H2, N2, CO2, and CH4) in porous organic cages (POCs) incorporated into fluorinated copolyimides polymers (FCPs). The FCPs were synthesized by the thermal and chemical imidization reaction of fluorinated dianhydrides, nonfluorinated dianhydride, and nonfluorinated diamine. Asymmetric hollow fiber membranes formed by the dry-jet/wet-quench spinning process. Once fresh FCP fibers were synthesized, they were crosslinked with POCs, vacuum dried at 90 °C. We investigated the uptake, gas selectivity and diffusion of different gases (C3H8, C3H6, CO2, and H2) over synthesized POC-mixed matrixed membranes (POC-MMM) at 25 °C and pressures up to 1 bar. At 1 bar and 25 °C, C3H8, C3H6 adsorption capacities reached 2.77 and 2.65 mmol/g over POC-MMM, respectively, while CO2, CH4, CO, N2 and H2 adsorption capacities of 1.48, 0.84, 0.33, 0.11, and 0.068 mmol/g, respectively. Furthermore, stable CMS membrane was formed by pyrolysis of POC-MMMs under an inert argon atmosphere at 1 atm. To test the gas transport properties of CMS-derived POC/MMM, a lab-scale hollow fiber module with two-five fibers was constructed. The results of longer-term operation of synthesized CMS membrane that was continuously operated for 264 h (10 days) with an equimolar binary H2/CO2, CH4/CO2 and C3H6/C3H8 feed at 25°C and 1 bar feed pressure. The modification yielded promising results in the reduction of physical aging of CMS membranes. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. Free, publicly-accessible full text available September 8, 2024
  3. Free, publicly-accessible full text available September 1, 2024
  4. Free, publicly-accessible full text available August 2, 2024
  5. Free, publicly-accessible full text available July 28, 2024
  6. Catalytically active asymmetric membranes were developed by crosslinking a polydimethylsiloxane (PDMS) thin layer onto a porous polyamide‐imide hollow fiber (PAIHF) support, followed by grafting of aminosilane with hydroxyl derived-PDMS/PAIHF, and finally palladium nanoparticles (PdNPs) immobilization using salicylic aldehyde. Aminosilane and salicylic aldehyde linkers were used to permanently immobilize PdNPs onto the PDMS surface through metal coordination chelation, which prevented their agglomeration and leaching from the catalytic membrane reactor (CMR) module. The obtained CMRs were used as a heterogeneous catalyst and continuous-flow membrane reactor for hydrogenation of 4-nitrophenol, aldol and nitroaldol condensation, Heck coupling, CO2 cycloaddition and hydroxyalkylation of aniline, and tandem reactions of glucose and fructose to 5-hydroxymethylfurfural (HMF). Our findings also revealed that the turnover frequency (TOF) and selectivity can be tuned and controlled by adjusting the chemistry and degree of cross-linkers, reaction solvents, and flow rates. Even though our polymeric hollow fiber microreactors showed relatively good performance at temperatures up to 150 °C, some amount of active spices (e.g., Pd nanoparticles) leached out from the microreactor due to polymer swelling, plasticization, and pore shrinkage during flow reaction, especially when exposed to polar aprotic solvents and aromatics, and deteriorated the stability of the immobilized catalysts. 
    more » « less
  7. Membrane-based separations offer the potential for the lowest energy demand requirements of all separation options. Among all nanoporous membranes, the carbon molecular sieves (CMS), metal-organic frameworks (MOFs), and mixed-matrix membranes (MMMs) with angstrom level molecular discrimination properties makes them appealing for separating a wide spectrum of gas-pairs. Here we present results of gas selectivity and diffusion of different gases (C2H6, C2H4, C3H8, C3H6, H2, N2, CO2, and CH4) in porous organic cages (POCs) incorporated into fluorinated copolyimides polymers (FCPs). The FCPs were synthesized by the iridization reaction of fluorinated dianhydrides, nonfluorinated dianhydride, and nonfluorinated diamine. Asymmetric hollow fiber membranes formed by the dry-jet/wet-quench spinning process. Once fresh FCP fibers were synthesized, they were crosslinked with POCs, vacuum dried at 90 °C. We investigated the uptake, gas selectivity and diffusion of different gases (C2H6, C2H4, C3H8, C3H6, H2, N2, CO2, and CH4) over synthesized POC-mixed matrixed membranes (POC-MMM) at 25 °C and pressures up to 1 bar. At 1 bar and 25 °C, C2H6, C2H4, C3H8, C3H6 adsorption capacities reached to 42.61, 2.56, 2.77 and 2.65 mmol/g over POC-MMM, respectively, while CO2, CH4, CO, N2 and H2 adsorption capacities of 1.48, 0.84, 0.33, 0.11, and 0.068 mmol/g, respectively. Furthermore, stable CMS membrane were formed by pyrolysis of POC-MMMs under an inert argon atmosphere at 1 atm. To test the gas transport properties of CMS-derived POC/MMM, a lab-scale hollow fiber module with two-five fibers was constructed. The results of longer-term operation of synthesized CMS membrane that was continuously operated for 264 h (10 days) with an equimolar binary H2/CO2, CH4/CO2 and C3H6/C3H8 feed at 25°C and 1 bar feed pressure. The modification yielded promising results in the reduction of physical aging of CMS membranes. 
    more » « less
  8. null (Ed.)