skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2317206

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 21, 2026
  2. Free, publicly-accessible full text available September 15, 2026
  3. This paper investigates the performance of a diverse set of large language models (LLMs) including leading closed-source (GPT-4, GPT-4o mini, Claude 3.5 Haiku) and open-source (Llama 3.1 70B, Llama 3.1 8B) models, alongside the earlier GPT-3.5 within the context of U.S. tax resolutions. AI-driven solutions like these have made substantial inroads into legal-critical systems with significant socio-economic implications. However, their accuracy and reliability have not been assessed in some legal domains, such as tax. Using the Volunteer Income Tax Assistance (VITA) certification tests—endorsed by the US Internal Revenue Service (IRS) for tax volunteering—this study compares these LLMs to evaluate their potential utility in assisting both tax volunteers as well as taxpayers, particularly those with low and moderate income. Since the answers to these questions are not publicly available, we first analyze 130 questions with the tax domain experts and develop the ground truths for each question. We then benchmarked these diverse LLMs against the ground truths using both the original VITA questions and syntactically perturbed versions (a total of 390 questions) to assess genuine understanding versus memorization/hallucinations. Our comparative analysis reveals distinct performance differences: closed-source models (GPT-4, Claude 3.5 Haiku, GPT-4o mini) generally demonstrated higher accuracy and robustness compared to GPT-3.5 and the open-source Llama models. For instance, on basic multiple-choice questions, top models like GPT-4 and Claude 3.5 Haiku achieved 83.33% accuracy, surpassing GPT-3.5 (54.17%) and the open-source Llama 3.1 8B (50.00%). These findings generally hold across both original and perturbed questions. However, the paper acknowledges that these developments are initial indicators, and further research is necessary to fully understand the implications of deploying LLMs in this domain. A critical limitation observed across all evaluated models was significant difficulty with open-ended questions, which require accurate numerical calculation and application of tax rules. We hope that this paper provides a means and a standard to evaluate the efficacy of current and future LLMs in the tax domain. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026
  4. Free, publicly-accessible full text available June 12, 2026
  5. Free, publicly-accessible full text available June 1, 2026