Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
Agricultural runoff ranks second only to atmospheric deposition as a source of nitrogen pollution to streams in the southeastern United States. Climate-smart practices such as irrigation have the potential to reduce these impacts and provide resilience in the face of climate change. The purpose of this study is to evaluate the impact of irrigation amounts and fertilizer application strategies on surface nitrate export to surrounding steams. Data from an existing experiment on corn nitrogen fertilization in the Southeastern US was utilized and a crop simulation model was employed to simulate the water and nitrogen dynamics within the soil with particular emphases on nutrient uptake and residual nutrients. left in the soil after harvest under varying fertilization scenarios. A hydrologic and nutrient export model was developed to run in conjunction with the crop model to simulate lateral export from the fields. The results of this study indicate that climate and nutrient management are the dominant factors in determining surface nutrient transport under both rain fed and irrigated conditions, confirming previous studies. The overall results show that irrigation, on average, reduced nutrient export from the surface, especially in dry years. The effect is even greater if the nutrients are applied later in the year while irrigation is on-going. While this present study provides an initial look at the potential impacts of irrigation on nutrient export in humid areas, the available on-farm observational data is limited in its content. However, the results obtained support existing literature and provide further evidence on the impact of irrigation as a climate resilient practice and will help direct future studies in the region.more » « lessFree, publicly-accessible full text available February 1, 2026
-
The US corn area footprint has changed significantly since the 20th century, declining in the southeastern states while exhibiting an increase or stable variations in the Midwest. As harvested acreage directly impacts the total corn production, understanding the influencing factors is crucial. This study assesses the role of potential drivers on the contrasting trajectories of harvested corn acreage between midwestern and southeastern US. Profit acreage analysis reveals that antecedent profits/losses have a statistically significant influence on corn acreage changes, with southeastern US, which experienced more loss-making years, also experiencing more frequent reductions in corn acreage. The high number of loss-making years in the Southeast is primarily attributed to the region’s low corn yield, influenced by climate and other agro-environmental factors. Using a panel regression model, we find that the loss-making years in the Southeast could have reduced to fewer than 26 out of the considered 45 years, or almost similar to the average in the Midwest, by just increasing the irrigated corn area to 50 %, a realistic irrigated corn area fraction already achieved in several Georgia counties. This underscores the potential for early policy interventions like irrigation facilitation to sustain and expand cropped acreage. However, we also find that this would only be economically feasible with incentives for both the installation and sustained operation of irrigation infrastructure.more » « less
An official website of the United States government
