skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2317935

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Large igneous provinces erupt highly reactive, predominantly basaltic lavas onto Earth’s surface, which should boost the weathering flux leading to long-term CO2drawdown and cooling following cessation of volcanism. However, throughout Earth’s geological history, the aftermaths of multiple Phanerozoic large igneous provinces are marked by unexpectedly protracted climatic warming and delayed biotic recovery lasting millions of years beyond the most voluminous phases of extrusive volcanism. Here we conduct geodynamic modelling of mantle melting and thermomechanical modelling of magma transport to show that rheologic feedbacks in the crust can throttle eruption rates despite continued melt generation and CO2supply. Our results demonstrate how the mantle-derived flux of CO2to the atmosphere during large igneous provinces can decouple from rates of surface volcanism, representing an important flux driving long-term climate. Climate–biogeochemical modelling spanning intervals with temporally calibrated palaeoclimate data further shows how accounting for this non-eruptive cryptic CO2can help reconcile the life cycle of large igneous provinces with climate disruption and recovery during the Permian–Triassic, Mid-Miocene and other critical moments in Earth’s climate history. These findings underscore the key role that outgassing from intrusive magmas plays in modulating our planet’s surface environment. 
    more » « less