skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2318652

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 12, 2026
  2. Polyurethanes (PU) make up a large portion of commodity plastics appearing in applications including insulation, footwear, and memory foam mattresses. 
    more » « less
    Free, publicly-accessible full text available January 23, 2026
  3. Plastic upcycling, which involves making plastic-derived products with unique or improved properties from discarded plastic materials, is a promising alternative to recycling and disposal to help reduce the overall production of waste. However, recycled and reused materials typically have inferior mechanical, thermal, optical, and barrier properties compared with virgin plastics. Upcycled plastic materials could improve these properties while addressing future waste accumulation. In this study, we use waste poly(ethylene terephthalate) (PET) collected from disposable food packaging to create a repurposed plastic graphene oxide (GO) composite with a goal of upcycling. We developed a one-pot “dynamic depolymerization” to break down PET in the presence of GO and successfully enabled transesterification of the polymer onto GO. Covalent attachment of PET onto GO and tailorable plastic content was confirmed by thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. These covalent composites (PET-GO) were found to be relatively impermeable to water vapor, showing promise for applications in packaging materials. Aqueous degradation experiments on the composite materials demonstrated that, in bulk conditions, PET-GOs remain mechanically robust while in contact with water over appropriate time scales for packaging applications, while beginning to break down in accelerated conditions. The use of depolymerization methods to promote polymer grafting concurrently with polymer deconstruction could provide a more general method for grafting waste polymers onto oxidized carbonaceous substrates with further study. 
    more » « less