skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2318937

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Production distributed systems provide rich features, but various defects can cause a system to silently violate its semantics without explicit errors. Such failures cause serious consequences. Yet, they are extremely challenging to detect, as it requires deep domain knowledge and substantial manual efforts to write good checkers. In this paper, we explore a novel approach that directly derives semantic checkers from system test code. We first present a large-scale study on existing system test cases. Guided by the study findings, we develop T2C, a framework that uses static and dynamic analysis to transform and generalize a test into a runtime checker. We apply T2C on four large, popular distributed systems and successfully derive tens to hundreds of checkers. These checkers detect 15 out of 20 real-world silent failures we reproduce and incur small runtime overhead. 
    more » « less
    Free, publicly-accessible full text available July 7, 2026
  2. We present a novel symbolic reasoning engine for SQL which can efficiently generate an inputIfornqueriesP1, ⋯,Pn, such that their outputs onIsatisfy a given property (expressed in SMT). This is useful in different contexts, such as disproving equivalence of two SQL queries and disambiguating a set of queries. Our first idea is to reason about an under-approximation of eachPi— that is, a subset ofPi’s input-output behaviors. While it makes our approach both semantics-aware and lightweight, this idea alone is incomplete (as a fixed under-approximation might miss some behaviors of interest). Therefore, our second idea is to perform search over an expressive family of under-approximations (which collectively cover all program behaviors of interest), thereby making our approach complete. We have implemented these ideas in a tool, Polygon, and evaluated it on over 30,000 benchmarks across two tasks (namely, SQL equivalence refutation and query disambiguation). Our evaluation results show that Polygon significantly outperforms all prior techniques. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026