Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We present an algorithm that canonicalizes the algebraic representations of the topological semantics of machine knitting programs. Machine knitting is a staple technology of modern textile production where hundreds of mechanical needles are manipulated to form yarn into interlocking loop structures. Our semantics are defined using a variant of a monoidal category, and they closely correspond to string diagrams. We formulate our canonicalization as an Abstract Rewriting System (ARS) over words in our category, and prove that our algorithm is correct and runs in polynomial time.more » « lessFree, publicly-accessible full text available August 5, 2026
- 
            Programming low-level controls for knitting machines is a meticulous, time-consuming task that demands specialized expertise. Recently, there has been a shift towards automatically generating low-level knitting machine programs from high-level knit representations that describe knit objects in a more intuitive, user-friendly way. Current high-level systems trade off expressivity for ease-of-use, requiring ad-hoc trapdoors to access the full space of machine capabilities, or eschewing completeness in the name of utility. Thus, advanced techniques either require ad-hoc extensions from domain experts, or are entirely unsupported. Furthermore, errors may emerge during the compilation from knit object representations to machine instructions. While the generated program may describe a valid machine control sequence, the fabricated object is topologically different from the specified input, with little recourse for understanding and fixing the issue. To address these limitations, we introduceinstruction graphs, an intermediate representation capable of capturing the full range of machine knitting programs. We define a semantic mapping from instruction graphs to fenced tangles, which make them compatible with the established formal semantics for machine knitting instructions. We establish a semantics-preserving bijection between machine knittable instruction graphs and knit programs that proves three properties - upward, forward, and ordered (UFO) - are both necessary and sufficient to ensure the existence of a machine knitting program that can fabricate the fenced tangle denoted by the graph. As a proof-of-concept, we implement an instruction graph editor and compiler that allows a user to transform an instruction graph into UFO presentation and then compile it to a machine program, all while maintaining semantic equivalence. In addition, we use the UFO properties to more precisely characterize the limitations of existing compilers. This work lays the groundwork for more expressive and reliable automated knitting machine programming systems by providing a formal characterization of machine knittability.more » « less
- 
            Illusion-knit fabrics reveal distinct patterns or images depending on the viewing angle. Artists have manually achieved this effect by exploiting microgeometry, i.e., small differences in stitch heights. However, past work in computational 3D knitting does not model or exploit designs based on stitch height variation. This paper establishes a foundation for exploring illusion knitting in the context of computational design and fabrication. We observe that the design space is highly constrained, elucidate these constraints, and derive strategies for developing effective, machine-knittable illusion patterns. We partially automate these strategies in a new interactive design tool that reduces difficult patterning tasks to familiar image editing tasks. Illusion patterns also uncover new fabrication challenges regarding mixed colorwork and texture; we describe new algorithms for mitigating fabrication failures and ensuring high-quality knit results.more » « less
- 
            Machine knitting is a well-established fabrication technique for complex soft objects, and both companies and researchers have developed tools for generating machine knitting patterns. However, existing representations for machine knitted objects are incomplete (do not cover the complete domain of machine knittable objects) or overly specific (do not account for symmetries and equivalences among knitting instruction sequences). This makes it difficult to define correctness in machine knitting, let alone verify the correctness of a given program or program transformation. The major contribution of this work is a formal semantics for knitout, a low-level Domain Specific Language for knitting machines. We accomplish this by using what we call the "fenced tangle," which extends concepts from knot theory to allow for a mathematical definition of knitting program equivalence that matches the intuition behind knit objects. Finally, using this formal representation, we prove the correctness of a sequence of rewrite rules; and demonstrate how these rewrite rules can form the foundation for higher-level tasks such as compiling a program for a specific machine and optimizing for time/reliability, all while provably generating the same knit object under our proposed semantics. By establishing formal definitions of correctness, this work provides a strong foundation for compiling and optimizing knit programs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
