skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2320335

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zr-doping in Li3InCl6enhances ionic conductivity by 2.4%viathe creation of lithium vacancies. Zr-F co-doped Li3InCl6electrolyte improves electrochemical stability through the formation of a LiF protective layer. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Over the past years, lithium-ion solid-state batteries have demonstrated significant advancements regarding such properties as safety, long-term endurance, and energy density. Solid-state electrolytes based on lithium halides offer new opportunities due to their unique features such as a broad electrochemical stability window, high lithium-ion conductivity, and elasticity at close to melting point temperatures that could enhance lithium-ion transport at interfaces. A comparative study of lithium indium halide (Li3InCl6) electrolytes synthesized through a mechano-thermal method with varying optimization parameters revealed a significant effect of temperature and pressure on lithium-ion transport. An analysis of Electrochemical Impedance Spectroscopy (EIS) data within the temperature range of 25–100 °C revealed that the optimized Li3InCl6 electrolyte reveals high ionic conductivity, reaching 1.0 mS cm−1 at room temperature. Herein, we present the utilization of in situ/operando X-ray Photoelectron Spectroscopy (XPS) and in situ X-ray powder diffraction (XRD) to investigate the temperature-dependent behavior of the Li3InCl6 electrolyte. Confirmed by these methods, significant changes in the Li3InCl6 ionic conductivity at 70 °C were observed due to phase transformation. The observed behavior provides critical information for practical applications of the Li3InCl6 solid-state electrolyte in a broad temperature range, contributing to the enhancement of lithium-ion solid-state batteries through their improved morphology, chemical interactions, and structural integrity. 
    more » « less