- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Cottle, John (2)
-
Kylander-Clark, Andrew (2)
-
Adamson, M (1)
-
Douglas, David N (1)
-
Schlatt, Lukas (1)
-
Shaw, Phil (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
High Spatial Resolution Petrochronology by Laser Ablation: Application to Complex Accessory MineralsOur ability to reconstruct the crystallization history of a given accessory mineral (i.e., geochronometers such as zircon, titanite, monazite, etc.)—and thus the geologic processes of its host—has increased severalfold over the past few decades; primarily through advances in precision, concurrent chemical analysis, throughput, and spatial resolution. In this contribution, we present a methodology that takes these advances a step further through the rapid characterization of a large number of accessory minerals at micron-scale resolution via laser-ablation inductively coupled plasma mass spectrometry. Our analytical setup employs an ultrafast washout laser (~1 ms; Element Scientific Laser) that can send individual, <5um ablation pulses to either one or both of two instruments: a Nu Plasma 3D mulitcollector ICP-MS and a Nu Vitesse time-of-flight ICP-MS. Because either ICP-MS can measure at the sub-ms timescale, every pulse can be analyzed at 100’s of Hz; 1D, 2D, or 3D analysis is possible, and data can be processed in a matter of minutes and hours, instead of days or weeks. We highlight the advantages of this methodology through examples of accessory phases in complex plutonic rocks and high-grade metamorphic terranes.more » « lessFree, publicly-accessible full text available July 10, 2026
-
Cottle, John; Kylander-Clark, Andrew; Schlatt, Lukas; Shaw, Phil; Douglas, David N (, The Geological Society of America (GSA))
An official website of the United States government
