Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Despite cognitive workload (CW) being a critical metric in several applications, no technology exists to seamlessly and reliably quantify CW. Previously, we demonstrated the feasibility of a wearable MagnetoCardioGraphy (MCG) sensor to classify high vs. low CW based on MCG-derived heart rate variability (mHRV). However, our sensor was unable to address certain critical operational requirements, resulting in noisy signals, often to the point of being unusable. In addition, test conditions for the participants were not decoupled from motion (i.e., physical activity (PA)), raising questions as to whether the noted changes in mHRV were attributed to CW, PA, or both. This study reports software and hardware advancements to optimize the MCG data quality, and investigates whether changes in CW (in the absence of PA) can be reliably detected. Performance is validated for healthy adults (n = 10) performing three types of CW tasks (one for low CW and two for high CW to eliminate the memory effect). Results demonstrate the ability to retrieve MCG R-peaks throughout the recordings, as well as the ability to differentiate high vs. low CW in all cases, confirming that CW does modulate the mHRV. A paired Bonferroni t-test with significance α=0.01 confirms the hypothesis that an increase in CW decreases mHRV. Our findings lay the groundwork toward a seamless, practical, and low-cost sensor for monitoring CW.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            Free, publicly-accessible full text available May 18, 2026
- 
            Free, publicly-accessible full text available May 18, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available