skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2320972

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 20, 2026
  2. Free, publicly-accessible full text available December 1, 2025
  3. Existing computer analytic methods for the microgrid system, such as reinforcement learning (RL) methods, suffer from a long-term problem with the empirical assumption of the reward function. To alleviate this limitation, we propose a multi-virtual-agent imitation learning (MAIL) approach to learn the dispatch policy under different power supply interrupted periods. Specifically, we utilize the idea of generative adversarial imitation learning method to do direct policy mapping, instead of learning from manually designed reward functions. Multi-virtual agents are used for exploring the relationship of uncertainties and corresponding actions in different microgrid environments in parallel. With the help of a deep neural network, the proposed MAIL approach can enhance robust ability by minimizing the maximum crossover discriminators to cover more interrupted cases. Case studies show that the proposed MAIL approach can learn the dispatch policies as well as the expert method and outperform other existing RL methods. 
    more » « less