skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2323119

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The efficacy of electrolytes significantly affects battery performance, leading to the development of several strategies to enhance them. Despite this, the understanding of solvation structure remains inadequate. It is imperative to understand the structure–property–performance relationship of electrolytes using diverse techniques. This review explores the recent advancements in electrolyte design strategies for high capacity, high-voltage, wide-temperature, fast-charging, and safe applications. To begin, the current state-of-the-art electrolyte design directions are comprehensively reviewed. Subsequently, advanced techniques and computational methods used to understand the solvation structure are discussed. Additionally, the importance of high-throughput screening and advanced computation of electrolytes with the help of machine learning is emphasized. Finally, future horizons for studying electrolytes are proposed, aimed at improving battery performance and promoting their application in various fields by enhancing the microscopic understanding of electrolytes. 
    more » « less