skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2324629

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Friction is one of the cruxes of hydrodynamic modeling; flood conditions are highly sensitive to the Friction Factors (FFs) used to calculate momentum losses. However, empirical FFs are challenging to derive, causing flood models to rely on surrogate observations (such as land cover) and introducing uncertainty. This research presents a laboratory‐trained Deep Neural Network (DNN), developed using flume experiments, to estimateManning's nbased on Point Cloud (PC) data. The DNN was deployed on real‐world lidar PCs to directly estimateManning's nunder regulatory and extreme storm events, showing improved modeling capabilities in both 1D and 2D hydrodynamic models. For 1D models, the lidar estimates decreased differences with values assigned by experts through engineering judgment. For 1D/2D coupled models, the lidar values produced better agreement with flood extents obtained from airborne imagery, while better matching flood insurance claim data for Hurricane Harvey. In both 1D and 1D/2D coupled models, lidar resulted in better agreement with validation gauges. For these reasons, the lidar values ofManning's nwere found to improve both regulatory models and forecasts for extreme storm events, while simultaneously providing a pathway to standardize the estimation of FFs. Changing from land cover to lidar estimates significantly affected fluvial and pluvial flood models, while surge flooding was generally unaffected. Downstream flow conditions were found to change the impacts of FFs to fluvial models. This manuscript introduces a reliable, repeatable, and readily accessible avenue for high‐resolution friction estimation based on 3D PCs, improving flood prediction, and removing uncertainty from hydrodynamic modeling. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Free, publicly-accessible full text available April 1, 2026
  3. Free, publicly-accessible full text available December 1, 2025