skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2324859

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 31, 2026
  2. Free, publicly-accessible full text available July 31, 2026
  3. Free, publicly-accessible full text available July 31, 2026
  4. Free, publicly-accessible full text available July 31, 2026
  5. Free, publicly-accessible full text available December 4, 2025
  6. Free, publicly-accessible full text available November 20, 2025
  7. Sustainability has become a critical focus area across the technology industry, most notably in cloud data centers. In such shared-use computing environments, there is a need to account for the power consumption of individual users. Prior work on power prediction of individual user jobs in shared environments has often focused on workloads that stress a single resource, such as CPU or DRAM. These works typically employ a specific machine learning (ML) model to train and test on the target workload for high accuracy. However, modern workloads in data centers can stress multiple resources simultaneously, and cannot be assumed to always be available for training. This paper empirically evaluates the performance of various ML models under different model settings and training data assumptions for the per-job power prediction problem using a range of workloads. Our evaluation results provide key insights into the efficacy of different ML models. For example, we find that linear ML models suffer from poor prediction accuracy (as much as 25% prediction error), especially for unseen workloads. Conversely, non-linear models, specifically XGBoost and xRandom Forest, provide reasonable accuracy (7–9% error). We also find that data-normalization and the power-prediction model formulation affect the accuracy of individual ML models in different ways. 
    more » « less