skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2324861

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce DissolvPCB, an electronic prototyping technique for fabricating fully recyclable printed circuit board assemblies (PCBAs) using affordable FDM 3D printing, with polyvinyl alcohol (PVA) as a water-soluble substrate and eutectic gallium-indium (EGaIn) as the conductive material. When obsolete, the PCBA can be easily recycled by immersing it in water: the PVA dissolves, the EGaIn re-forms into a liquid metal bead, and the electronic components are recovered. These materials can then be reused to fabricate a new PCBA. We present the DissolvPCB workflow, characterize its design parameters, evaluate the performance of circuits produced with it, and quantify its environmental impact through a lifecycle assessment (LCA) comparing it to conventional CNC-milled FR-4 boards. We further develop a software plugin that automatically converts PCB design files into 3D-printable circuit substrate models. To demonstrate the capabilities of DissolvPCB, we fabricate and recycle three functional prototypes: a Bluetooth speaker featuring a double-sided PCB, a finger fidget toy with a 3D circuit topology, and a shape-changing gripper enabled by Joule-heat-driven 4D printing. The paper concludes with a discussion of current technical limitations and opportunities for future directions. 
    more » « less
    Free, publicly-accessible full text available September 27, 2026
  2. We present BIOGEM, a fully biodegradable McKibben actuator with integrated sensing, made from gelatin-based composites. By tailoring the material compositions, we customize the mechanical and electrical properties of the biodegradable composites, creating an integrated biodegradable system that combines both actuation and sensing functionalities. BIOGEM integrates a McKibben actuating structure by using stiff gelatin as outer braiding and the stretchable gelatin as air chambers. It also integrates resistive strain sensing through ionic gelatin, allowing the actuator to monitor its own deformation without relying on conventional electronics. We characterize the actuator’s performance across key parameters including braid angle, wall thickness, and material stiffness, demonstrating reliable contraction and repeatable force output at low pressures. Biodegradation is validated through both enzyme-assisted and backyard soil studies, confirming the material’s sustainable end-of-life behavior under realistic conditions. We illustrate the potential of this platform through interactive, edible, and environmentally-degradable prototypes across human–computer interaction and soft robotics scenarios. 
    more » « less
    Free, publicly-accessible full text available September 27, 2026
  3. As edge devices see increasing adoption across a wide range of applications, understanding their environmental impact has become increasingly urgent. Unlike cloud systems, edge deployments consist of tightly integrated microcontrollers, sensors, and energy sources that collectively shape their carbon footprint. In this paper, we present a carbon-aware design framework tailored to embedded edge systems. We analyze the embodied emissions of several off-the-shelf microcontroller boards and peripheral components and examine how deployment context—such as workload type, power source, and usage duration—alters the carbon-optimal configuration. Through empirical case studies comparing battery- and solar-powered scenarios, we find that the lowest-emission choice is often workload- and context-specific, challenging assumptions that energy-efficient or renewable powered systems are always the most sustainable. Our results highlight the need for fine-grained, system-level reasoning when designing for sustainability at the edge and provide actionable insights for researchers and practitioners seeking to reduce the carbon cost of future deployments. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  4. Exploring the shared, intersectional problem space of empowered users making carbon-aware decisions that guide computer systems operation. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  5. The carbon emissions of modern information and communication technologies (ICT) present a significant environmental challenge, accounting for approximately 4% of global greenhouse gases, and are on par with the aviation industry. Modern internet services levy high carbon emissions due to the significant infrastructure resources required to operate them, owing to strict service requirements expected by users. One opportunity to reduce emissions is relaxing strict service requirements by leveraging eco-feedback. In this study, we explore the effect of the carbon reduction impact of allowing longer internet service response time based on user preferences and feedback. Across four services (i.e., Amazon, Google, ChatGPT, Social Media) our study reveals opportunities to relax latency requirements of services based on user feedback; this feedback is application-specific, with ChatGPT having the most favorable eco-feedback tradeoff. Further system studies suggest leveraging the reduced latency can bring down the carbon footprint of an average service request by 93.1%. 
    more » « less
    Free, publicly-accessible full text available June 30, 2026