- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Côté, Jessica M (1)
-
Fair, Matthew J (1)
-
Flynn, Evan R (1)
-
Harris, Courtney K (1)
-
Kuehl, Steven A (1)
-
Wacht, Jacob T (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The continental margin is a major repository for organic carbon; however, anthropogenic alterations to global sediment and particulate terrestrial organic carbon (TerrOC) fluxes have reduced delivery by rivers and offshore burial in recent decades. Despite the absence of mainstem damming, land use change in the Ayeyarwady and Thanlwin River catchments in Myanmar has accelerated over the last 50 years. As a result, deforestation and landscape erosion have likely altered fluvial fluxes to the Northern Andaman Sea shelf; however, the magnitude and preservation of geochemical signals associated with development are unknown. Utilizing elemental and bulk stable and radioisotope analysis, this study investigates spatial and temporal trends in sediment sources and TerrOC concentrations to identify the potential impacts of recent (<100 years) offshore development. While our results demonstrate an along-shelf trend in provenance and TerrOC concentrations, temporal (downcore) trends are not observed. We attribute this observation to frequent, large-scale seabed resuspension and suggest that extensive mixing on the inner shelf creates a low-pass filter that effectively attenuates such signatures. This is in contrast to other large Asian deltas, where signals of human landscape disturbance are clearly preserved offshore. We predict that planned mainstem damming in Myanmar will result in larger alterations in sediment and TerrOC supply that may become apparent offshore in the near future.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Harris, Courtney K; Wacht, Jacob T; Fair, Matthew J; Côté, Jessica M (, Frontiers in Earth Science)The Ayeyarwady and Thanlwin Rivers, which drain Myanmar, together form one of the largest point sources of freshwater and sediment to the global ocean. Combined, these rivers annually deliver an estimated 485 Mt of sediment to the northern Andaman Sea. This sediment contributes to a perennially muddy zone within the macro-tidal Gulf of Martaban, but little is known about the processes that dominate dispersal and trapping of sediment there, as very few water column observations are available. A research cruise in December 2017 provided a rare opportunity to obtain Acoustic Doppler Current Profiler (ADCP) data along transects from the Gulf of Martaban and adjacent continental shelf. Two transects were obtained from the outer portion of the Gulf of Martaban in water depths that ranged from about 20–35 m. These showed very fast currents, especially during flood tide conditions, exceeding 1.5 m/s. The backscatter record from the ADCP indicated asymmetries in distribution of suspended sediment during the ebb versus flood phase of the tide. During ebb tidal conditions, the backscatter record indicated that sediment was transported in either a surface advected layer, or fairly well-mixed throughout the water column. In contrast, during flood tidal conditions, sediment was confined to the bottom boundary layer, even though the velocities were faster during flood than the ebb conditions. The vertical structure of the currents during flood tide conditions indicated the presence of sediment–induced stratification because currents within the near-bed turbid layers were relatively slow, but speeds increased markedly above these layers. This albeit limited dataset provides an exciting glimpse into the dynamics of sediment transport within the muddy, macrotidal Gulf of Martaban, and implies the importance of tidal straining and bottom nepheloid layer formation there.more » « less
An official website of the United States government
