skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2325748

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Utilizing colloidal probe, lateral force microscopy and simultaneous confocal microscopy, combined with finite element analysis, we investigate how a microparticle starts moving laterally on a soft, adhesive surface. We find that the surface can form a self-contacting crease at the leading front, which results from a buildup of compressive stress. Experimentally, creases are observed on substrates that exhibit either high or low adhesion when measured in the normal direction, motivating the use of simulations to consider the role of adhesion energy and interfacial strength. Our simulations illustrate that the interfacial strength plays a dominating role in the nucleation of a crease. After the crease forms, it progresses through the contact zone in a Schallamach wave-like fashion. Interestingly, our results suggest that this Schallamach wave-like motion is facilitated by free slip at the adhesive, self-contacting interface within the crease. 
    more » « less
  2. Free, publicly-accessible full text available October 1, 2026